Research article

Some characterizations of non-null rectifying curves in dual Lorentzian 3-space $\mathbb{D}_{1}^{3}$

  • Received: 15 August 2020 Accepted: 10 November 2020 Published: 09 December 2020
  • MSC : 53C50, 53C40

  • This paper gives several properties and characterization of non-null rectifying curves in dual Lorentzian 3-space $\mathbb{D% }_{1}^{3}$. In considering a causal character of a dual curve we give some parameterization of rectifying dual curves, and a dual differential equation of third order is constructed for every non-null dual curve. Then several well-known characterizations of spherical, normal and rectifying dual curves are consequences of this differential equation.

    Citation: Roa Makki. Some characterizations of non-null rectifying curves in dual Lorentzian 3-space $\mathbb{D}_{1}^{3}$[J]. AIMS Mathematics, 2021, 6(3): 2114-2131. doi: 10.3934/math.2021129

    Related Papers:

  • This paper gives several properties and characterization of non-null rectifying curves in dual Lorentzian 3-space $\mathbb{D% }_{1}^{3}$. In considering a causal character of a dual curve we give some parameterization of rectifying dual curves, and a dual differential equation of third order is constructed for every non-null dual curve. Then several well-known characterizations of spherical, normal and rectifying dual curves are consequences of this differential equation.



    加载中


    [1] O. Bottema, B. Roth, Theoretical Kinematics, North-Holland Press, New York, 1979.
    [2] A. Karger, J. Novak, Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York, 1985.
    [3] H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, Berlin, Heidelberg, 2001.
    [4] Y. Li, D. Pe, Evolutes of dual spherical curves for ruled surfaces, Math. Meth. Appl. Sci., 39 (2016), 3005–3015. doi: 10.1002/mma.3748
    [5] R. A. Abdel-Baky, Evolutes of hyperbolic dual spherical curve in dual Lorentzian 3-space, Int. J. Anal. Appl., 15 (2017), 114–124.
    [6] F. Tas, R. A. Abdel-Baky, On a spacelike line congruence which has the parameter ruled surfaces as principal ruled surfaces, Inter. Elect. J. Geom., 12 (2019), 135–143.
    [7] R. A. Abdel-Baky, Time-like line congruence in the dual Lorentzian 3-space D3 1, Inter. J. Geom. Methods Mod. Phys., 16 (2019), 201–211.
    [8] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Mounthly, 110 (2003), 147–152. doi: 10.1080/00029890.2003.11919949
    [9] D. S. Kim, Chung, K. H. Cho, Space curves satisfying τ/κ = as + b, Honam Math. J., 15 (1993) 5–9.
    [10] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153–163.
    [11] M. Turgut, S. Yilmaz, Contributions to classical differential geometry of the curves in E3, Magna, 4 (2008), 5–9.
    [12] S. Deshmukh, B. Y. Chen, N. B. Turki, A differential equations for Frenet curves in Euclidean 3-space and its applications, Rom. J. Math. Comput. Sci., 8 (2018), 1–6.
    [13] K. Ilarslan, Ő. Boyacoğlu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos, Solitons Fractals, 38 (2008), 1383–1389.
    [14] K. Ilarslan, Spacelike normal curves in Minkowski space E3 1, Turkish J. Math., 29 (2005), 53–63.
    [15] K. Ilarslan, E. Nesovic, M. Petrovic'-Torgasev, Some characterizations of rectifying curves in the Minkowski 3-space, Novi. Sad. J. Math., 33 (2003), 23–32.
    [16] A. Ucum, C. Camc, K. Ilarslan, General helices with spacelike slope axis in Minkowski 3-space, Asian-Eur. J. Math., 12 (2019), 1950076. doi: 10.1142/S1793557119500761
    [17] B. Ylmaz, I. Gok, Y. Yayl, Extended rectifying curves in Minkowski 3-space, Adv. Appl. Clifford Algebras, 26 (2016), 861–872. doi: 10.1007/s00006-015-0637-7
    [18] A. Uçum, C. Camci, K. Ilarslan, General helices with timelike slope axis in Minkowski 3-Space, Adv. Appl. Clifford Algebras, 26 (2016), 793–807. doi: 10.1007/s00006-015-0610-5
    [19] C. Camci, K. Ilarslan, A. Uçum, General helices with lightlike slope axis, Filomat, 32 (2018), 355–367. doi: 10.2298/FIL1802355C
    [20] N. Ayyıldız, A. C. Coken, A. Yucesan, On the dual Darboux rotation axis of the spacelike dual space curve, Demonstratio Math., 37 (2004), 197–202.
    [21] N. Ayyıldız, A. C. Coken, A. Yucesan, A characterization of dual Lorentzian spherical curves in the dual Lorentzian space, Taiwanese J. Math., 11 (2007), 999–1018.
    [22] E. Ozbey, M. Oral, A study on rectifyng curves in the dual Lorentzian space, Bull. Korean Math. Soc., 46 (2009), 967–978.
    [23] M. Onder, Z. Ekinci, On closed timelike and spacelike ruled surfaces, Math. Methods Appl. Sci., 40 (2017), 786–795. doi: 10.1002/mma.4011
    [24] Y. Li, Z. Wang, T. Zhao, Slant helix of order n and sequence of Darboux developable of principaldirectional curves, Math. Methods Appl. Sci., 43 (2020), 1–16. doi: 10.1002/mma.5729
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1454) PDF downloads(42) Cited by(3)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog