Research article

Stochastic comparisons of series and parallel systems with dependent and heterogeneous Topp-Leone generated components

  • Received: 14 September 2020 Accepted: 18 November 2020 Published: 07 December 2020
  • MSC : Primary 90B25; Secondary 60E15, 60K10

  • In this paper, we carry out stochastic comparisons of lifetimes of series and parallel systems with dependent heterogeneous Topp-Leone generated components. The usual stochastic order and the reversed hazard rate order are developed for the parallel systems with the help of vector majorization under Archimedean copula dependence, and the results for the usual stochastic order are also obtained for the series systems. Finally, some numerical examples are provided to illustrate the effectiveness of our theoretical findings.

    Citation: Li Zhang, Rongfang Yan. Stochastic comparisons of series and parallel systems with dependent and heterogeneous Topp-Leone generated components[J]. AIMS Mathematics, 2021, 6(3): 2031-2047. doi: 10.3934/math.2021124

    Related Papers:

  • In this paper, we carry out stochastic comparisons of lifetimes of series and parallel systems with dependent heterogeneous Topp-Leone generated components. The usual stochastic order and the reversed hazard rate order are developed for the parallel systems with the help of vector majorization under Archimedean copula dependence, and the results for the usual stochastic order are also obtained for the series systems. Finally, some numerical examples are provided to illustrate the effectiveness of our theoretical findings.



    加载中


    [1] N. Balakrishnan, C. R. Rao, Order statistics: applications, Elsevier Science, 1998.
    [2] B. Khaledi, S. C. Kochar, Some new results on stochastic comparisons of parallel systems, J. Appl. Probab., 37 (2000), 1123–1128. doi: 10.1239/jap/1014843091
    [3] P. Zhao, N. Balakrishnan, New results on comparisons of parallel systems with heterogeneous gamma components, Stat. Probab. Lett., 81 (2011), 36–44. doi: 10.1016/j.spl.2010.09.016
    [4] L. X. Fang, X. S. Zhang, New results on stochastic comparison of order statistics from heterogeneous Weibull populations, J. Korean Stat. Soc., 41 (2012), 13–16. doi: 10.1016/j.jkss.2011.05.004
    [5] E. Barlow, F. Proschan, Statistical theory of reliability and life testing: probability models, Holt, Rinehart & Winston of Canada Ltd, 1975.
    [6] J. Bartoszewicz, Dispersive ordering and the total time on test transformation, Stat. Probab. Lett., 4 (1986), 285–288. doi: 10.1016/0167-7152(86)90045-3
    [7] P. J. Boland, T. Hu, M. Shaked, J. G. Shanthikumar, Stochastic ordering of order statistics Ⅱ, Springer, 2002.
    [8] A. Kundu, S. Chowdhury, A. K. Nanda, N. K. Hazra, Some results on majorization and their applications, J. Comput. Appl. Math., 301 (2016), 161–177. doi: 10.1016/j.cam.2016.01.015
    [9] N. Balakrishnan, P. Nanda, S. Kayal, Ordering of series and parallel systems comprising heterogeneous generalized modified Weibull components, Appl. Stoch. Models. Bus. Ind., 34 (2018), 816–834. doi: 10.1002/asmb.2353
    [10] S. Kochar, Stochastic comparisons of order statistics and spacings: a review, ISRN Probability and Statistics, 2012 (2012), 222–229.
    [11] N. Balakrishnan, P. Zhao, Ordering properties of order statistics from heterogeneous populations: a review with an emphasis on some recent developments, Probab. Eng. Inform. Sci., 27 (2013), 403–443. doi: 10.1017/S0269964813000156
    [12] R. L. Dykstra, S. C. Kochar, J. Rojo, Stochastic comparisons of parallel systems of heterogeneous exponential components, J. Stat. Plan. Infer., 65 (1997), 203–211. doi: 10.1016/S0378-3758(97)00058-X
    [13] N. Balakrishnan, G. Barmalzan, A. Haidari, On usual multivariate stochastic ordering of order statistics from heterogeneous beta variables, J. Multivar. Anal., 127 (2014), 147–150. doi: 10.1016/j.jmva.2014.02.008
    [14] N. Torrado, On magnitude orderings between smallest order statistics from heterogeneous beta distributions, J. Math. Anal. Appl., 426 (2015), 824–838. doi: 10.1016/j.jmaa.2015.02.003
    [15] J. Navarro, F. Spizzichino, Comparisons of series and parallel systems with components sharing the same copula, Appl. Stoch. Models. Bus. Ind., 26 (2010), 775–791. doi: 10.1002/asmb.819
    [16] C. Li, X. H. Li, Likelihood ratio order of sample minimum from heterogeneous Weibull random variables, Stat. Probab. Lett., 97 (2015), 46–53. doi: 10.1016/j.spl.2014.10.019
    [17] C. Li, R. Fang, X. H. Li, Stochastic comparisons of order statistics from scaled and interdependent random variables, Metrika, 79 (2015), 553–578.
    [18] R. Fang, C. Li, X. H. Li, Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, 50 (2016), 930–955. doi: 10.1080/02331888.2015.1119151
    [19] A. Kundu, S. Chowdhury, Stochastic comparisons of lifetimes of two series and parallel systems with location-scale family distributed components having archimedean copulas, arXiv: 1710.00769, 2017.
    [20] R. Fang, C. Li, X. H. Li, Ordering results on extremes of scaled random variables with dependence and proportional hazards, Statistics, 52 (2018), 458–478. doi: 10.1080/02331888.2018.1425998
    [21] C. Li, X. H. Li, Hazard rate and reversed hazard rate orders on extremes of heterogeneous and dependent random variables, Stat. Probab. Lett., 146 (2019), 104–111. doi: 10.1016/j.spl.2018.11.005
    [22] S. Rezaei, B. B. Sadr, M. Alizadeh, S. Nadarajah, Topp-Leone generated family of distributions: Properties and applications, Commun. Stat. Theor. M., 46 (2017), 2893–2909. doi: 10.1080/03610926.2015.1053935
    [23] R. F. Yan, T. Q. Luo, On the optimal allocation of active redundancies in series system, Commun. Stat. Theor. M., 47 (2018), 2379–2388. doi: 10.1080/03610926.2015.1054942
    [24] E. J. Veres-Ferrer, J. M. Pavia, On the relationship between the reversed hazard rate and elasticity, Stat. Papers, 55 (2014), 275–284. doi: 10.1007/s00362-012-0470-1
    [25] M. Shaked, G. Shanthikumar, Stochastic orders, New York: Springer, 2007.
    [26] T. Lando, L. Bertoli-Barsotti, Stochastic dominance relations for generalised parametric distributions obtained through compositio, METRON, 78 (2020), 297–311.
    [27] T. Lando, L. Bertoli-Barsotti, Second-order stochastic dominance for decomposable multiparametric families with applications to order statistics, Stat. Probab. Lett., 159 (2020), 108691.
    [28] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, 2 Eds., New York: Springer, 2011.
    [29] R. B. Nelsen, An introduction to copulas, New York: Springer, 2006.
    [30] X. H. Li, R. Fang, Ordering properties of order statistics from random variables of Archimedean copulas with applications, J. Multivar. Anal., 133 (2015), 304–320. doi: 10.1016/j.jmva.2014.09.016
    [31] S. Das, S. Kayal, Ordering extremes of exponentiated location-scale models with dependent and heterogeneous random samples, Metrika, 83 (2020), 869–893. doi: 10.1007/s00184-019-00753-2
    [32] R. Chanchal, V. Gupta, A. K. Misra, Stochastic comparisons of series and parallel systems with Topp-Leone generated family of distributions, arXiv: 1908.05896, 2019.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1329) PDF downloads(41) Cited by(4)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog