Citation: Liu Gao, Chunfang Chen, Jianhua Chen, Chuanxi Zhu. Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity[J]. AIMS Mathematics, 2021, 6(2): 1332-1347. doi: 10.3934/math.2021083
[1] | V. Ambrosio, R. Servadei, Supercritical fractional Kirchhoff type problems, Fract. Calc. Appl. Anal., 22 (2019), 1351-1377. doi: 10.1515/fca-2019-0071 |
[2] | G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differ. Equ., 255 (2013), 2340-2362. doi: 10.1016/j.jde.2013.06.016 |
[3] | T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problem on $\mathbb{R}^N$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741. doi: 10.1080/03605309508821149 |
[4] | S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math., 4 (1983), 17-26. |
[5] | L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306 |
[6] | X. J. Chang, Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involoving the fractional Laplacian, J. Differ. Equ., 256 (2014), 479-494. |
[7] | K. Cheng, Q. Gao, Sign-changing solutions for the stationary Kirchhoff problems involving the fractional laplacian in $\mathbb{R}^N$, Acta Math. Sci., 38 (2018), 1712-1730. doi: 10.1016/S0252-9602(18)30841-5 |
[8] | D. G. Costa, Z. Q. Wang, Multiplicity results for a class of superlinear elliptic problems, Proc. Amer. Math. Soc., 133 (2005), 787-794. |
[9] | E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev space, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004 |
[10] | A. Fiscella, A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv. Nonlinear Anal., 8 (2017), 645-660. doi: 10.1515/anona-2017-0075 |
[11] | A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Adv. Nonlinear Anal., 94 (2014), 156-170. doi: 10.1016/j.na.2013.08.011 |
[12] | G. Z. Gu, X. H. Tang, The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity, Adv. Nonlinear Stud., 19 (2019), 779-795. doi: 10.1515/ans-2019-2045 |
[13] | C. Huang, G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Math. Anal. Appl., 472 (2019), 705-727. doi: 10.1016/j.jmaa.2018.11.048 |
[14] | H. Jin, W. B. Liu, Fractional Kirchhoff equation with a general critical nonlinearity, Appl. Math. Lett., 74 (2017), 140-146. doi: 10.1016/j.aml.2017.06.003 |
[15] | G. Kirchhoff, Vorlesungen Uber Mechanik, Teubner, Leipzig, 1883. |
[16] | A. R. Li, J. B. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in $\mathbb{R}^3$, Z. Angew. Math. Phys., 66 (2015), 3147-3158. doi: 10.1007/s00033-015-0551-9 |
[17] | Q. Q. Li, K. M. Teng, X. Wu, Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations with critical or supercritical growth, Math. Methods Appl. Sci., 41 (2017), 1136-1144. |
[18] | J. L. Lions, On some questions in boundary value problems of mathematical physics, In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, NorthHolland, Amsterdam, 1978. |
[19] | G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$, J. Differ. Equ., 257 (2014), 566-600. doi: 10.1016/j.jde.2014.04.011 |
[20] | G. Molica Bisci, V. D. Rădulescu, R. Servadei, Variational methods for nonlocal fractional problems, Cambridge Univ. Press., Cambridge, 2016. |
[21] | D. Naimen, M. Shibata, Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension, Nonlinear Anal., 186 (2019), 187-208. doi: 10.1016/j.na.2019.02.003 |
[22] | N. Nyamoradi, L. I. Zaidan, Existence and multiplicity of solutions for fractional p-Laplacian Schrödinger-Kirchhoff type equations, Complex Var. Elliptic Equ., 63 (2017), 346-359. |
[23] | R. C. Pei, Y. Zhang, J. H. Zhang, Ground state solutions for fractional p-Kirchhoff equation with subcritical and critical exponential growth, Bull. Malays. Math. Sci. Soc., 43 (2020), 355-377. doi: 10.1007/s40840-018-0686-x |
[24] | S. I. Pohozǎev, A certain class of quasilinear hyperbolic equations, Mat. Sb., 96 (1975), 152-166. |
[25] | P. Pucci, M. Q. Xiang, B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differ. Equ., 54 (2015), 2785-2806. doi: 10.1007/s00526-015-0883-5 |
[26] | P. Pucci, M. Q. Xiang, B. L. Zhang, Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian, Adv. Calc. Var., 12 (2019), 253-275. doi: 10.1515/acv-2016-0049 |
[27] | R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacia, Trans. Amer. Math. Soc., 367 (2015), 67-102. |
[28] | J. Simon, Régularité de la solution d'une équation non linéaire dans $\mathbb{R}^N$, Lecture Notes in Math., 665 (1978), 205-227. doi: 10.1007/BFb0061807 |
[29] | M. Q. Xiang, B. L. Zhang, X. Y. Guo, Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem, Nonlinear Anal., 120 (2015), 299-313. doi: 10.1016/j.na.2015.03.015 |
[30] | M. Q. Xiang, B. L. Zhang, V. D. Rădulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690- 709. |
[31] | M. Q. Xiang, B. L. Zhang, D. Repovš, Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Truding-Moser nonlinearity, Nonlinear Anal., 186 (2019), 74-98. |
[32] | M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. |
[33] | J. Zhang, Z. L. Lou, Y. J. Ji, W. Shao, Ground state of Kirchhoff type fractional Schrödinger equations with critical growth, J. Math. Anal. Appl., 462 (2018), 57-83. doi: 10.1016/j.jmaa.2018.01.060 |