Citation: Beyza Billur İskender Eroǧlu, Dilara Yapışkan. Generalized conformable variational calculus and optimal control problems with variable terminal conditions[J]. AIMS Mathematics, 2020, 5(2): 1105-1126. doi: 10.3934/math.2020077
[1] | R. Khalil, M. A. Horani, A. Yousef, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[2] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, New York, 2006. |
[3] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[4] | V. E. Tarasov, No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear Sci., 18 (2013), 2945-2948. doi: 10.1016/j.cnsns.2013.04.001 |
[5] | V. E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci., 62 (2018), 157-163. doi: 10.1016/j.cnsns.2018.02.019 |
[6] | M. D. Ortigueira, J. T. Machado, What is a fractional derivative?, J. Comput. Phys., 293 (2015), 4-13. doi: 10.1016/j.jcp.2014.07.019 |
[7] | G. S. Teodoro, J. T. Machado, E. C. De Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208. doi: 10.1016/j.jcp.2019.03.008 |
[8] | J. Weberszpil, J. A. Helayël-Neto, Variational approach and deformed derivatives, Physica A, 450 (2016), 217-227. doi: 10.1016/j.physa.2015.12.145 |
[9] | W. Rosa, J. Weberszpil, Dual conformable derivative: Definition, simple properties and perspectives for applications, Chaos Soliton. Fract., 117 (2018), 137-141. doi: 10.1016/j.chaos.2018.10.019 |
[10] | D. R. Anderson, E. Camrud, D. J. Ulness, On the nature of the conformable derivative and its applications to physics, Journal of Fractional Calculus and Applications, J. Fract. Calc. Appl., 10 (2019), 92-135. |
[11] | H. W. Zhou, S. Yang, S. Q. Zhang, Conformable derivative approach to anomalous diffusion, Physica A, 491 (2018), 1001-1013. doi: 10.1016/j.physa.2017.09.101 |
[12] | D. Avcı, B. B. İskender Eroǧlu, N. Özdemir, The Dirichlet problem of a conformable advection-diffusion equation, Therm. Sci., 21 (2017), 9-18. doi: 10.2298/TSCI160421235A |
[13] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016 |
[14] | F. Silva, D. Moreira, M. Moret, Conformable Laplace transform of fractional differential equations, Axioms, 7 (2018), 55. |
[15] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898. |
[16] | R. Khalil, A. Yousef, M. Al Horani, et al. Fractional analytic functions, Far East J. Math. Sci., 103 (2018), 113-123. |
[17] | S. Uçar, N. Yılmaz Özgür, B. B. İskender Eroǧlu, Complex conformable derivative, Arab. J. Geosci., 12 (2019), 201. |
[18] | M. A. Hammad and R. Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl., 13 (2014), 177-183. |
[19] | D. R. Anderson, D. J. Ulness, Results for conformable differential equations, preprint, 2016. |
[20] | E. Ünal, A. Gökdoǧan, E. Çelik, Solutions around a regular α singular point of a sequential conformable fractional differential equation, Kuwait J. Sci., 44 (2017), 9-16. |
[21] | N. Sene, Solutions for some conformable differential equations, Progr. Fract. Differ. Appl. 4 (2018), 493-501. |
[22] | Z. Hammouch, T. Mekkaoui, P. Agarwal, Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2 + 1) dimensions with time-fractional conformable derivative, Eur. Phys. J. Plus, 133 (2018), 248-253. doi: 10.1140/epjp/i2018-12096-8 |
[23] | H. Bulut, T. A. Sulaiman, H. M. Başkonuş, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1-7. doi: 10.1016/j.ijleo.2018.02.086 |
[24] | M. Yavuz, Novel solution methods for initial boundary value problems of fractional order with conformable differentiation, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8 (2017), 1-7. |
[25] | E. Ünal, A. Gökdoǧan, Solution of conformable fractional ordinary differential equations via differential transform method, Optik, 128 (2017), 264-273. doi: 10.1016/j.ijleo.2016.10.031 |
[26] | M. Yavuz, N. Özdemir, A different approach to the European option pricing model with new fractional operator, Math. Model. Nat. Pheno., 13 (2018), 12. |
[27] | F. Evirgen, Conformable fractional gradient based dynamic system for constrained optimization problem, Acta Phys. Pol. A, 132 (2017), 1066-1069. doi: 10.12693/APhysPolA.132.1066 |
[28] | W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290 (2015), 150-158. doi: 10.1016/j.cam.2015.04.049 |
[29] | B. B. İskender Eroǧlu, D. Avcı, N. Özdemir, Optimal control problem for a conformable fractional heat conduction equation, ACTA Phys. Pol. A, 132 (2017), 658-662. doi: 10.12693/APhysPolA.132.658 |
[30] | J. M. Lazo, D. F. M. Torres, Variational calculus with conformable fractional derivatives, IEEE/CAA J. Autom. Sin., 4 (2017), 340-352. doi: 10.1109/JAS.2016.7510160 |
[31] | B. B. İskender Eroǧlu, D. Yapişkan, Local generalization of transversality conditions for optimal control problem, Math. Model. Nat. Pheno., 14 (2019), 310. |
[32] | T. Chiranjeevi, R. K. Biswas, Closed-form solution of optimal control problem of a fractional order system, Journal of King Saud University-Science, 2019. |
[33] | R. K. Biswas, S. Sen, Free final time fractional optimal control problems, J. Franklin. I., 351 (2014), 941-951. doi: 10.1016/j.jfranklin.2013.09.024 |