Citation: Andrea Ratto. Higher order energy functionals and the Chen-Maeta conjecture[J]. AIMS Mathematics, 2020, 5(2): 1089-1104. doi: 10.3934/math.2020076
[1] | P. Baird, A. Fardoun, S. Ouakkas, Conformal and semi-conformal biharmonic maps, Ann. Glob. Anal. Geom., 34 (2008), 403-414. doi: 10.1007/s10455-008-9118-8 |
[2] | P. Baird, D. Kamissoko, On constructing biharmonic maps and metrics, Ann. Glob. Anal. Geom., 23 (2003), 65-75. doi: 10.1023/A:1021213930520 |
[3] | E. Bombieri, E. De Giorgi, E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268. doi: 10.1007/BF01404309 |
[4] | V. Branding, The stress-energy tensor for polyharmonic maps, Nonlinear Analysis (in press). |
[5] | V. Branding, A structure theorem for polyharmonic maps between Riemannian manifolds, arXiv:1901.08445. |
[6] | V. Branding, S. Montaldo, C. Oniciuc, et al. Higher order energy functionals, arXiv:1906.06249. |
[7] | V. Branding, C. Oniciuc, Unique continuation theorems for biharmonic maps, Bull. London Math. Soc., 51 (2019), 603-621. doi: 10.1112/blms.12240 |
[8] | R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds of $\mathbb{S}^3$, Internat. J. Math., 12 (2001), 867-876. |
[9] | B.-Y. Chen, Total mean curvature and submanifolds of finite type, Second edition, Series in Pure Mathematics, 27, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. |
[10] | B.-Y. Chen, Some open problems and conjecture on the submanifolds of finite type: recent development, Tamkang J. Math., 45 (2014), 87-108. doi: 10.5556/j.tkjm.45.2014.1564 |
[11] | J. Eells, L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, 50. American Mathematical Society, Providence, RI, 1983. |
[12] | J. Eells, L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524. doi: 10.1112/blms/20.5.385 |
[13] | J. Eells, J.H. Sampson, Énergie et déformations en géométrie différentielle, Ann. Inst. Fourier, 14 (1964), 61-69. doi: 10.5802/aif.161 |
[14] | J. Eells, J.H. Sampson, Variational theory in fibre bundles, Proc. U.S.-Japan Seminar in Differential Geometry, (1965), 22-33. |
[15] | H. I. Eliasson, Geometry of manifolds of maps, J. Diff. Geom., 1 (1967), 169-194. doi: 10.4310/jdg/1214427887 |
[16] | A. Gastel, C. Scheven, Regularity of polyharmonic maps in the critical dimension, Commun. Anal. Geom., 17 (2009), 185-226. doi: 10.4310/CAG.2009.v17.n2.a2 |
[17] | P. Goldstein, P. Strzelecki, A. Zatorska-Goldstein, On polyharmonic maps into spheres in the critical dimension, Ann. Inst. H. Poincaré, Nonlinear Analysis, 26 (2009), 1387-1405. |
[18] | T. Hasanis, T. Vlachos, Hypersurfaces in E4 with harmonic curvature vector field, Math. Nachr., 172 (1995), 145-169. doi: 10.1002/mana.19951720112 |
[19] | W.-Y. Hsiang, Minimal cones and the spherical Bernstein problem, I, Ann. of Math., 118 (1983), 61-73. doi: 10.2307/2006954 |
[20] | W.-Y. Hsiang, Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces, I, J. Diff. Geom., 17 (1982), 337-356. doi: 10.4310/jdg/1214436924 |
[21] | W.-Y. Hsiang, B. Lawson, Minimal submanifolds of low cohomogeneity, J. Diff. Geom., 5 (1971), 1-38. doi: 10.4310/jdg/1214429775 |
[22] | M. C. Hong, C. Y. Wang, Regularity and relaxed problems of minimizing biharmonic maps into spheres, Calc. Var. and Partial Diff. Equations, 23 (2005), 425-450. doi: 10.1007/s00526-004-0309-2 |
[23] | G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7 (1986), 389-402. |
[24] | Y. B. Ku, Interior and boundary regularity of intrinsic biharmonic maps to spheres, Pacific J. Math., 234 (2008), 43-67. doi: 10.2140/pjm.2008.234.43 |
[25] | L. Lemaire, Minima and critical points of the energy in dimension two, Global differential geometry and global analysis, Springer Lecture Notes in Mathematics, 838 (1981), 187-193. doi: 10.1007/BFb0088857 |
[26] | S. Maeta, k-harmonic maps into a Riemannian manifold with constant sectional curvature, Proc. Amer. Math. Soc., 140 (2012), 1835-1847. doi: 10.1090/S0002-9939-2011-11049-9 |
[27] | S. Maeta, The second variational formula of the k-energy and k-harmonic curves, Osaka J. Math., 49 (2012), 1035-1063. |
[28] | S. Maeta, Construction of triharmonic maps, Houston J. Math., 41 (2015), 433-444. |
[29] | S. Maeta, N. Nakauchi, H. Urakawa, Triharmonic isometric immersions into a manifold of nonpositively constant curvature, Monatsh. Math., 177 (2015), 551-567. doi: 10.1007/s00605-014-0713-4 |
[30] | S. Montaldo, C. Oniciuc, A. Ratto, Proper biconservative immersions into the Euclidean space, Ann. Mat. Pura e Appl., 195 (2016), 403-422. doi: 10.1007/s10231-014-0469-4 |
[31] | S. Montaldo, C. Oniciuc, A. Ratto, On cohomogeneity one biharmonic hypersurfaces into the Euclidean space, J. Geom. Phys., 106 (2016), 305-313. doi: 10.1016/j.geomphys.2016.04.012 |
[32] | S. Montaldo, C. Oniciuc, A. Ratto, Rotationally symmetric maps between models, J. Math. Anal. Appl., 431 (2015), 494-508. doi: 10.1016/j.jmaa.2015.05.082 |
[33] | S. Montaldo, C. Oniciuc, A. Ratto, Reduction methods for the bienergy, Révue Roumaine de Mathématiques Pures et Appliquées, 61 (2016), 261-292. |
[34] | S. Montaldo, A. Ratto, A general approach to equivariant biharmonic maps, Med. J. Math., 10 (2013), 1127-1139. |
[35] | S. Montaldo, A. Ratto, Biharmonic curves into quadrics, Glasgow Math. J., 57 (2015), 131-141. doi: 10.1017/S0017089514000172 |
[36] | S. Montaldo, A. Ratto, Biharmonic submanifolds into ellipsoids, Monatsh. Math., 176 (2015), 589-601. doi: 10.1007/s00605-014-0684-5 |
[37] | S. Montaldo, A. Ratto, New examples of r-harmonic immersions into the sphere, J. Math. Anal. Appl., 458 (2018), 849-859. doi: 10.1016/j.jmaa.2017.09.046 |
[38] | S. Montaldo, A. Ratto, Proper r-harmonic submanifolds into ellipsoids and rotation hypersurfaces, Nonlinear Analysis, 172 (2018), 59-72. doi: 10.1016/j.na.2018.03.002 |
[39] | N. Nakauchi, H. Urakawa, Polyharmonic maps into the Euclidean space, Note Di Matematica, 38 (2018), 89-100. |
[40] | C. Oniciuc, Biharmonic submanifolds in space forms, Habilitation thesis, 2012. |
[41] | Y.-L. Ou, Some recent progress of biharmonic submanifolds, Contemp. Math., 674 (2016), 127-139. doi: 10.1090/conm/674/13559 |
[42] | R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30. doi: 10.1007/BF01941322 |
[43] | J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup., 11 (1978), 211-228. |
[44] | R. T. Smith, Harmonic mappings of spheres, Am. J. Math., 97 (1975), 229-236. |
[45] | S. B. Wang, The first variation formula for k-harmonic mappings, Journal of Nanchang University, 1989. |