Citation: Ritu Agarwal, Mahaveer Prasad Yadav, Dumitru Baleanu, S. D. Purohit. Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative[J]. AIMS Mathematics, 2020, 5(2): 1062-1073. doi: 10.3934/math.2020074
[1] | R. Agarwal, Kritika, S. D. Purohit, A mathematical fractional model with non-singular kernel for thrombin receptor activation in calcium signalling, Math. Meth. Appl. Sci., 42 (2019), 7160-7171. doi: 10.1002/mma.5822 |
[2] | R. Agarwal, M. P. Yadav, R. P. Agarwal, Collation analysis of fractional moisture content based model in unsaturated zone using q-homotopy analysis method, Methods of Mathematical Modelling: Fractional Differential Equations, CRC Press, Taylor & Francis, 151, 2019. |
[3] | R. Agarwal, M. P. Yadav, R. P. Agarwal, et al., Analytic solution of fractional advection dispersion equation with decay for contaminant transport in porous media, Matematicki Vesnik, 71 (2019), 5-15. |
[4] | R. Agarwal, M. P. Yadav, R. P. Agarwal, et al., Analytic solution of space time fractional advection dispersion equation with retardation for contaminant transport in porous media, Progress in Fractional Differentiation and Applications, 5 (2019), 283-295. |
[5] | R. Agarwal, M. P. Yadav, R. P. Agarwal, Analytic solution of time fractional Boussinesq equation for groundwater flow in unconfined aquifer, J. Discontinuity, Nonlinearity Complexity, 8 (2019), 341-352. doi: 10.5890/DNC.2019.09.009 |
[6] | A. Atangana, D. Baleanu, Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer, J Eng. Phys., 143 (2017), Article Number: D4016005. |
[7] | M. S. Aydogan, D. Baleanu, A. Mousalou, et al., On high order fractional integro-differential equations including the Caputo-Fabrizio derivative, Boundary Value Probl., 2018 (2018), 90. |
[8] | D. Baleanu, A. Mousalou, S. Rezapour, The extended fractional Caputo-Fabrizio derivative of order 0 ≤ σ < 1 on $C_\mathbb{R}[0,1]$ and the existence of solutions for two higher-order series-type differential equations, Adv. Differ. Equations, 2018 (2018), 255. |
[9] | N. R. Bastos, Calculus of variations involving Caputo-Fabrizio fractional differentiation, Statistics, Optimization & Information Computing, 6 (2018), 12-21. |
[10] | J. Bear, Dynamics of fluids in porous media, Courier Corporation, 2013. |
[11] | D. Baleanu, S. S. Sajjadi, A, Jajarmi, et al., New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, Eur. Phys. J. Plus, 134 (2019), 181. |
[12] | D. Baleanu, A. Jajarmi, J. H. Asad, The fractional model of spring pendulum: New features within different kernels, Proc. Rom. Acad., 19 (2018), 447-454. |
[13] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fractional Differ. Appl., 2 (2015), 73-85. |
[14] | G. Dagan, Flow and transport in porous formations, Springer Science & Business Media, 2012. |
[15] | G. De Josselin de Jong, Longitudinal and transverse diffusion in granular deposits, Trans. Am. Geophys. Union, 39 (1958), 67-74. doi: 10.1029/TR039i001p00067 |
[16] | F. A. Dullien, Porous media: Fluid transport and pore structure, Academic press, 2012. |
[17] | R. A. Greenkorn, Steady flow through porous media, AIChE Journal, 27 (1975), 529-545. |
[18] | J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Front. Fract. Calc., 1 (2017), 270-342. |
[19] | A. Jajarmi, B. Ghanbari, D. Baleanu, A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence, Chaos: An Interdiscip. J. Nonlinear Sci., 29 (2019), 093111. |
[20] | A. Jajarmi, S. Arshad, D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Stat. Mech. Appl., 535 (2019), 122524. |
[21] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fractional Differ. Appl., 1 (2015), 87-92. |
[22] | P. I. Polubarinova-Koch, Theory of ground water movement, Princeton University Press, 2015. |
[23] | P. G. Saffman, A theory of dispersion in a porous medium, J. Fluid Mech., 6 (1959), 321-349. doi: 10.1017/S0022112059000672 |
[24] | A. Scheidegger, On the theory of flow of miscible phases in porous media, International Union of Geodesy and Geophysics, 1957. |
[25] | F. W. Schwartz, Macroscopic dispersion in porous media: The controlling factors, Water Resour. Res., 13 (1977), 743-752. doi: 10.1029/WR013i004p00743 |
[26] | M. P. Yadav, R. Agarwal, Numerical investigation of fractional-fractal Boussinesq equation, Chaos: An Interdiscip. J. Nonlinear Sci., 29 (2019), 013109. |