Research article Topical Sections

Effect of the incorporation of BiFeO3 on the structural, electrical and magnetic properties of the lead-free Bi0.5Na0.5TiO3

  • Received: 07 September 2021 Accepted: 26 October 2021 Published: 05 November 2021
  • Powders of the system (1–x)Bi0.5Na0.5TiO3xBiFeO3 (x = 0, 0.02, 0.08, 0.10) are synthesized by the combustion reaction method. The crystal structure and the particle size of Bi0.5Na0.5TiO3 are modified by the incorporation of BiFeO3, as can be seen from the infrared spectroscopy and X-ray diffraction results. The inclusion of iron and the increase in the molar percentage of bismuth in the BNT matrix generate new bonds with a different force constant. The structural analysis showed that the addition of BFO to the BNT does not induce any structural phase transition, preserving the rhombohedral symmetry of the Bi0.5Na0.5TiO3 system. The electrical measurements show that the incorporation of iron increases the conductivity of the system generated by an increase in the concentration of oxygen vacancies; alternatively, the addition of 10% of BiFeO3 generates ferrimagnetic behavior reflected in the magnetic hysteresis curves obtained at room temperature.

    Citation: Wolfgang Zúñiga-Mera, Sonia Gaona Jurado, Alejandra Isabel Guerrero Duymovic, Claudia Fernanda Villaquirán Raigoza, José Eduardo García. Effect of the incorporation of BiFeO3 on the structural, electrical and magnetic properties of the lead-free Bi0.5Na0.5TiO3[J]. AIMS Materials Science, 2021, 8(5): 792-808. doi: 10.3934/matersci.2021048

    Related Papers:

  • Powders of the system (1–x)Bi0.5Na0.5TiO3xBiFeO3 (x = 0, 0.02, 0.08, 0.10) are synthesized by the combustion reaction method. The crystal structure and the particle size of Bi0.5Na0.5TiO3 are modified by the incorporation of BiFeO3, as can be seen from the infrared spectroscopy and X-ray diffraction results. The inclusion of iron and the increase in the molar percentage of bismuth in the BNT matrix generate new bonds with a different force constant. The structural analysis showed that the addition of BFO to the BNT does not induce any structural phase transition, preserving the rhombohedral symmetry of the Bi0.5Na0.5TiO3 system. The electrical measurements show that the incorporation of iron increases the conductivity of the system generated by an increase in the concentration of oxygen vacancies; alternatively, the addition of 10% of BiFeO3 generates ferrimagnetic behavior reflected in the magnetic hysteresis curves obtained at room temperature.



    加载中


    [1] Fruth V, Mitoseriu L, Berger D, et al. (2007) Preparation and characterization of BiFeO3 ceramic. Prog Solid State Ch 35: 193–202. doi: 10.1016/j.progsolidstchem.2007.01.019
    [2] Chengang X, Dunmin L, Kwok KW (2008) Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci 10: 934–940. doi: 10.1016/j.solidstatesciences.2007.11.003
    [3] Hagiyev MS, Ismaizade IH, Abiyev AK (1984) Pyroelectric properties of (Na½Bi½)TiO3 ceramics. Ferroelectrics 56: 215–217. doi: 10.1080/00150198408221371
    [4] Suchanicz J, Nowakowska-Malczyk M, Kania A, et al. (2021). Effects of electric field poling on structural, thermal, vibrational, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 single crystals. J Alloy Compd 854: 157227. doi: 10.1016/j.jallcom.2020.157227
    [5] Chen M, Xu Q, Kim BH, et al. (2008) Structure and electrical properties of (Na0.5Bi0.5)1–xBaxTiO3 piezoelectric ceramics. J Eur Ceram Soc 28: 843–849. doi: 10.1016/j.jeurceramsoc.2007.08.007
    [6] Wang G, Zhongming F, Murakami S, et al. (2019) Origin of the large electrostrain in BiFeO3–BaTiO3 based lead-free ceramics. J Mater Chem A 7: 21254–21263. doi: 10.1039/C9TA07904A
    [7] Wang D, Wang M, Liu F (2015) Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram Int 41: 8768–8772. doi: 10.1016/j.ceramint.2015.03.100
    [8] Li ZJ, Hou ZL, Song WL, et al. (2016) Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles. Mater Lett 175: 207–211. doi: 10.1016/j.matlet.2016.04.016
    [9] Cheng S, Zhang BP, Zhao L, et al. (2019) Enhanced insulating and piezoelectric properties of BiFeO3–BaTiO3–Bi0.5Na0.5TiO3 ceramics with high Curie temperature. J Am Ceram Soc 102: 7355–7365. doi: 10.1111/jace.16602
    [10] Dorcet V, Marchet P, Trolliard G (2007) Structural and dielectric studies of the Na0.5Bi0.5TiO3–BiFeO3 system. J Eur Ceram Soc 27: 4371–4374. doi: 10.1016/j.jeurceramsoc.2007.02.173
    [11] Wu J, Wang J (2009) Multiferroic behaviour and orientation dependence of lead-free (1–x)BiFeO3–x(Bi0.50Na0.50)TiO3 thin films. J Phys D Appl Phys 42: 195405. doi: 10.1088/0022-3727/42/19/195405
    [12] Hieno A, Sakamoto W, Moriya M, et al. (2011) Synthesis of BiFeO3–Bi0.5Na0.5TiO3 thin films by chemical solution deposition and their properties. Jpn J Appl Phys 50: 09NB04. doi: 10.7567/JJAP.50.09NB04
    [13] Ji WJ, Chen YB, Zhang ST, et al. (2012) Microstructure and electric properties of lead-free 0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3 ceramics. Ceram Int 38: 1683–1686. doi: 10.1016/j.ceramint.2011.09.061
    [14] Kim C Y, Sekino T, Niihara K (2003) Synthesis of bismuth sodium titanate nanosized powders by solution/sol-gel process. J Am Ceram Soc 86: 1464–1467. doi: 10.1111/j.1151-2916.2003.tb03497.x
    [15] Ma YJ, Cho JH, Lee YH, et al. (2006) Hydrothermal synthesis of (Bi1/2Na1/2)TiO3 piezoelectric ceramics. Mater Chem Phys 98: 5–8. doi: 10.1016/j.matchemphys.2004.09.045
    [16] Van Hal HAM, Groen WA, Maassen S, et al. (2001) Mechanochemical synthesis of BaTiO3, Bi0.5Na0.5TiO3 and Ba2NaNb5O15 dielectric ceramics. J Am Ceram Soc 21: 1689–1692. doi: 10.1016/S0955-2219(01)00095-4
    [17] Patil KC, Aruna ST, Ekambaram S (1997) Combustion synthesis. Curr Opin Solid St M 2: 158–165. doi: 10.1016/S1359-0286(97)80060-5
    [18] Fityk 0.9.2 a curve fitting and data analysis program, 2010. Available from: http://www.unipress.waw.pl/fityk/.Marcin Wojdyr.
    [19] Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748.
    [20] Cullity BD, Stock SR (2001) Elements of X-ray Diffraction, 3 Eds., New York: Prentice Hall Publication.
    [21] Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22: 151–152. doi: 10.1107/S0365110X67000234
    [22] Warren BE, Averbach BL (1950) The effect of cold-work distortion on X-ray patterns. J Appl Phys 21: 595–599. doi: 10.1063/1.1699713
    [23] Suryanarayana C, Norton MG (1998) Part I Basics, X-ray Diffraction: A Practical Approach, New York: Plenum Press.
    [24] Xavier E (2004) Introduction to the behavior of ceramic pastes (in Spanish). Available from: https://www.scienceopen.com/document?vid=178d6249-68f8-445a-b6b6-19140255a435.
    [25] Moreno R (2005) Rheology of ceramic suspensions. Available from: http://boletines.secv.es/upload/20070111131337.contenido_adicional_45[1].pdf.
    [26] Nakamoto K (2008) Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6 Eds., John Wiley & Sons.
    [27] Chen Z, He X (2010) Low-temperature preparation of nanoplated bismuth titanate microspheres by a sol-gel-hydrothermal method. J Alloy Compd 497: 312–315. doi: 10.1016/j.jallcom.2010.03.053
    [28] Li JB, Wang H, Hou YD, et al. (2004) Low-temperature preparation of Na0.5Bi0.5TiO3 nano whiskers by a sol-gel-hydrothermal method. Nanotechnology 15: 777–780. doi: 10.1088/0957-4484/15/7/010
    [29] Ng CY, Razak KA (2011) Properties of praseodymium-doped bismuth potassium titanate (Bi0.5K0.5TiO3) synthesised using the soft combustion technique. J Alloy Compd 509: 942–947. doi: 10.1016/j.jallcom.2010.09.136
    [30] Ardelean I, Cora S, Ioncu V (2006) Structural investigation of CuO–Bi2O3–B2O3 glasses by FT-IR, Raman and UV-VIS spectroscopies. Optoelectron Adv M 8: 1843–1847.
    [31] Ardelean I, Cora S, Rusu D (2008) EPR and FT-IR spectroscopic studies of Bi2O3–B2O3–CuO glasses. Physica B 403: 3682–3685. doi: 10.1016/j.physb.2008.06.016
    [32] Bhushan B, Basumallick A, Bandopadhyay SK, et al. (2009) Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles. J Phys D Appl Phys 42: 065004–065011. doi: 10.1088/0022-3727/42/6/065004
    [33] Ramadevudu G (2011) FTIR and some physical properties of alkaline earth borate glasses containing heavy metal oxides. Int J Eng Sci Technol 3: 6998–7005.
    [34] Gurmeet L, Verma N (2014) Synthesis and characterization of BiFeO3 nanowires and their applications in dye-sensitized solar cells. Mat Sci Semicon Proc 21: 206–211. doi: 10.1016/j.mssp.2013.11.029
    [35] Chiang YM, Birnie DP, Kingery V (1997) Physical Ceramics-Principles for Ceramic Science and Engineering, John Wiley & Sons.
    [36] Karthik T, Rao TD, Srinivas A, et al. (2012) A-site cation disorder and Size variance effects on the physical properties of multiferroic Bi0.9RE0.1FeO3 ceramics (RE = Gd3+, Tb3+, Dy3+). arXiv: 1206.5606. Available from: https://arXiv.org/abs/1206.5606.
    [37] Reddy R, Rao R, Viswanath R (1989) Correlation between electronegativity differences and bond energies. J Am Chem Soc 111: 2914–2915. doi: 10.1021/ja00190a028
    [38] Jones GO, Thomas PA (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr B 58: 168–178. doi: 10.1107/S0108768101020845
    [39] Oxford Cryosystems, Crystallographica Search-Match, Version 2, 1, 1, 1. Available from: http://www.crystallographica.co.uk.
    [40] Kumar MM, Srinivas A, Suryanarayana SV (2000) Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys 87: 855–862. doi: 10.1063/1.371953
    [41] Bhalla AS, Guo R, Roy R (2000) The perovskite structure-a review of its role in ceramic science and technology. Mater Res Innov 4: 3–26. doi: 10.1007/s100190000062
    [42] Kayser GP (2014) New double perovskites obtained under extreme conditions of pressure and temperature [Doctoral Dissertation]. University Complutense of Madrid, Spain.
    [43] Wang D, Angel RJ (2011) Octahedral tilts, symmetry-adapted displacive modes and polyhedral volume ratios in perovskite structures. Acta Crystallogr B 67: 302–314. doi: 10.1107/S0108768111018313
    [44] Rao KS, Rajulu KCV, Tilak B, et al. (2010) Effect of Ba2+ in BNT ceramics on dielectric and conductivity properties. Nat Sci 2: 357–367.
    [45] Lee WC, Huang CY, Tsao LK, et al. (2009) Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics. J Eur Ceram Soc 29: 1443–1448. doi: 10.1016/j.jeurceramsoc.2008.08.028
    [46] Ramana EV, Suryanarayana SV, Bhima ST (2010) Synthesis and magnetoelectric studies on Na0.5Bi0.5TiO3–BiFeO3 solid solution ceramics. Solid State Sci 12: 956–962. doi: 10.1016/j.solidstatesciences.2010.02.009
    [47] Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32: 751–767. doi: 10.1107/S0567739476001551
    [48] Shahmoradi Y, Souri D (2019) Growth of silver nanoparticles within the tellurovanadate amorphous matrix: Optical band gap and band tailing properties, beside the Williamson–Hall estimation of crystallite size and lattice strain. Ceram Int 5: 7857–7864. doi: 10.1016/j.ceramint.2019.01.094
    [49] Izumi F, Ikeda T (2014) Implementation of the Williamson–Hall and Halder–Wagner Methods into RIETAN-FP, Nagoya Institute of Technology, 3: 33–38.
    [50] Patle LB, Labhane PK, Huse VR, et al. (2015) Structural analysis of Cu doped TiO2 nanoparticles using Williamson–Hall method. IJSRSET 1: 66–70.
    [51] Suryanarayana C, Norton MG (1998) Determination of crystallite size and lattice strain, X-ray Diffraction: A Practical Approach, New York: Plenum Press.
    [52] Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr 20: 79–83. doi: 10.1107/S0021889887087090
    [53] Ramana E, Mahajan A, Graca M, et al. (2014) Ferroelectric and magnetic properties of magnetoelectric (Na0.5Bi0.5)TiO3–BiFeO3 synthesized by acetic acid assisted sol-gel method. J Eur Ceram Soc 34: 4201–4211. doi: 10.1016/j.jeurceramsoc.2014.06.027
    [54] Dorcet V, Marchet P, Peña O, et al. (2009) Properties of the solid solution (1—x)Na0.5Bi0.5TiO3–(x)BiFeO3. J Magn Magn Mater 321: 1762–1766. doi: 10.1016/j.jmmm.2009.02.014
    [55] Yao J, Ge W, Luo L, et al. (2010) Hierarchical domains in Na1/2Bi1/2TiO3 single crystals: Ferroelectric phase transformations within the geometrical restrictions of a ferroelastic inheritance. Appl Phys Lett 96: 222905. doi: 10.1063/1.3443717
    [56] Lee JH, Lee GJ, Pham TL, et al. (2020) Suppression of dielectric loss at high temperature in (Bi1/2Na1/2)TiO3 ceramic by controlling A-site cation deficiency and heat treatment. J Sens Sci Technol 29: 7–13. doi: 10.5369/JSST.2019.29.1.7
    [57] Dorcet V, Trolliard G, Boullay P (2008) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition. Chem Mater 20: 5061–5073. doi: 10.1021/cm8004634
    [58] He H, Lu X, Li M, et al. (2020) Thermal and compositional driven relaxor ferroelectric behaviors of lead-free Bi0.5Na0.5TiO3–SrTiO3 Ceramics. J Mater Chem C 7: 2411–2418. doi: 10.1039/C9TC04864B
    [59] Li W, Chen K, Yao Y, et al. (2004) Correlation among oxygen vacancies in bismuth titanate ferroelectric ceramics. Appl Phys Lett 85: 4717–4719. doi: 10.1063/1.1823583
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1766) PDF downloads(92) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog