Mini review Topical Sections

Photoactivated Fuel Cells (PhotoFuelCells). An alternative source of renewable energy with environmental benefits

  • This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.

    Citation: Stavroula Sfaelou, Panagiotis Lianos. Photoactivated Fuel Cells (PhotoFuelCells). An alternative source of renewable energy with environmental benefits[J]. AIMS Materials Science, 2016, 3(1): 270-288. doi: 10.3934/matersci.2016.1.270

    Related Papers:

    [1] Okechukwu Okafor, Abimbola Popoola, Olawale Popoola, Samson Adeosun . Surface modification of carbon nanotubes and their nanocomposites for fuel cell applications: A review. AIMS Materials Science, 2024, 11(2): 369-414. doi: 10.3934/matersci.2024020
    [2] Serguei Chiriaev, Nis Dam Madsen, Horst-Günter Rubahn, Shuang Ma Andersen . Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures. AIMS Materials Science, 2017, 4(6): 1289-1304. doi: 10.3934/matersci.2017.6.1289
    [3] Andrea Ehrmann, Tomasz Blachowicz . Recent coating materials for textile-based solar cells. AIMS Materials Science, 2019, 6(2): 234-251. doi: 10.3934/matersci.2019.2.234
    [4] Silvia Colodrero . Conjugated polymers as functional hole selective layers in efficient metal halide perovskite solar cells. AIMS Materials Science, 2017, 4(4): 956-969. doi: 10.3934/matersci.2017.4.956
    [5] Anita Haeussler, Stéphane Abanades, Julien Jouannaux, Martin Drobek, André Ayral, Anne Julbe . Recent progress on ceria doping and shaping strategies for solar thermochemical water and CO2 splitting cycles. AIMS Materials Science, 2019, 6(5): 657-684. doi: 10.3934/matersci.2019.5.657
    [6] Noah M. Johnson, Yuriy Y. Smolin, Chris Shindler, Daniel Hagaman, Masoud Soroush, Kenneth K. S. Lau, Hai-Feng Ji . Photochromic dye-sensitized solar cells. AIMS Materials Science, 2015, 2(4): 503-509. doi: 10.3934/matersci.2015.4.503
    [7] Eduard Kessler, Rainer Gadow, Jona Straub . Basalt, glass and carbon fibers and their fiber reinforced polymer composites under thermal and mechanical load. AIMS Materials Science, 2016, 3(4): 1561-1576. doi: 10.3934/matersci.2016.4.1561
    [8] Avner Neubauer, Shira Yochelis, Gur Mittelman, Ido Eisenberg, Yossi Paltiel . Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency. AIMS Materials Science, 2016, 3(3): 1256-1265. doi: 10.3934/matersci.2016.3.1256
    [9] Ionut Claudiu Roata, Catalin Croitoru, Alexandru Pascu, Elena Manuela Stanciu . Photocatalytic coatings via thermal spraying: a mini-review. AIMS Materials Science, 2019, 6(3): 335-353. doi: 10.3934/matersci.2019.3.335
    [10] Etsana Kiros Ashebir, Berhe Tadese Abay, Taame Abraha Berhe . Sustainable A2BBX6 based lead free perovskite solar cells: The challenges and research roadmap for power conversion efficiency improvement. AIMS Materials Science, 2024, 11(4): 712-759. doi: 10.3934/matersci.2024036
  • This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.


    Plant probiotic bacteria represent a heterogeneous group of prokaryotes, mostly natural-occurring soil bacteria, which have beneficial traits directly related to enhance plant development. Specifically, this kind of beneficial bacteria, acting as plant symbionts or plant endophytes, enhances plant growth, crop yields and their products quality (grains, fruits and/or others).

    Over the last decades, a plethora of studies have focused on the isolation of potential plant probiotic bacteria from soil, rhizosphere or plant tissues. Moreover, their applications and efficiency as single inoculants or as a part of bacterial consortia have been evaluated in several kind of crops, such as cereals, legumes, vegetables and other kind of superior plants, such as trees, ornamentals and aromatic plants.

    This special issue pretends to cover established and updated studies about plant probiotic bacteria and their benefits for agriculture and forestry, which will have a direct and beneficial impact on human and animal health and also, will minimize the use of chemical fertilizers, contributing to a more sustainable agriculture and forestry.

    This Special Issue contains 15 publications, 10 reviews and 5 original research articles, which cover most of the current aspects related to the benefits of plant probiotic bacteria in the global agriculture, combining recent basic and applied knowledge about this topic.

    The content of this Special Issue can be divided in six different parts: (ⅰ) Applications of plant probiotic bacteria in agriculture and forestry, with 3 contributions (Ishaq et al., Porto de Souza Vandenberghe et al., Cruz-Gonzalez et al.); (ⅱ) Taxonomy and systematics of Plant Probiotic Bacteria in the "genomics" era, with 1 contribution (Carro and Nouioui); (ⅲ) Effects on yield and quality of crops and fruits, with 4 contributions (Di Benedetto et al., Jimenez-Gomez et al., Diez-Mendez and Rivas, Silva et al., ); (ⅳ) Effects on biocontrol and bioremediation, with 3 contributions (Ortiz et al., Valverde et al. and Veliz et al.); (ⅴ) plant probiotic bacteria interactions with their hosts and environment, with 3 contributions (Hidalgo et al., Da-Silva et al. and Muñoz-Azcarate et al.) and (ⅵ) Technologies and current marketing of PPB-based products, with 1 contribution (Menendez and García-Fraile).

    The editors acknowledge all the authors for their valuable and straightforward contributions to this Special Issue.


    [1] Becquerel E (1839) Mémoire sur les effets électriques produits sous l'influence des rayons solaires. Comptes Rendus 9: 561–567.
    [2] Fujishima A, Honda K (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238: 37–38. doi: 10.1038/238037a0
    [3] Kaneko M, Nemoto J, Ueno H, et al. (2006) Photoelectrochemical Reaction of Biomass and Bio-Related Compounds With Nanoporous TiO2 Film Photoanode and O2-Reducing Cathode. Electrochem Commun 8: 336–340. doi: 10.1016/j.elecom.2005.12.004
    [4] Lianos P (2011) Production of Electricity and Hydrogen by Photocatalytic Degradation of Organic Wastes in a Photoelectrochemical Cell: The Concept of the Photofuelcell: A Review of a Re-Emerging Research Field. J Hazard Mater 185: 575–590. doi: 10.1016/j.jhazmat.2010.10.083
    [5] Michal R, Sfaelou S, Lianos P (2014) Photocatalysis for Renewable Energy Production using PhotoFuelCells. Molecules 19: 19732–19750. doi: 10.3390/molecules191219732
    [6] Shu D, Wu J, Gong Y, et al. (2014) BiOI-based photoactivated fuel cell using refractory organic compounds as substrates to generate electricity. Catal Today 224: 13–20. doi: 10.1016/j.cattod.2013.12.017
    [7] Yang C, He Y, Li K, et al. (2015) Degrading organic pollutants and generating electricity in a dual-chamber rotating-disk photocatalytic fuel cell (RPFC) with a TiO2 nanotube array anode. Res Chem Intermed 41: 5365–5377. doi: 10.1007/s11164-014-1637-2
    [8] Karanasios N, Georgieva J, Valova E, et al. (2015) Photoelectrocatalytic Oxidation of Organics Under Visible Light Illumination: A Short Review. Curr Org Chem 19: 512–520. doi: 10.2174/1385272819666150115000247
    [9] Lu S-J, Ji S-B, Liu J-C, et al. (2015) Photoelectrocatalytic oxidation of glucose at a ruthenium complex modified titanium dioxide electrode promoted by uric acid and ascorbic acid for photoelectrochemical fuel cells. J Power Sources 273: 142–148. doi: 10.1016/j.jpowsour.2014.09.060
    [10] Li K, Zhang H, Tang T, et al. (2014) Optimization and application of TiO2/Ti-Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously. Water Res 62: 1–10. doi: 10.1016/j.watres.2014.05.044
    [11] Sfaelou S, Sygellou L, Dracopoulos V, et al. (2014) Effect of the nature of cadmium salts on the effectiveness of CdS SILAR deposition and its consequences on the performance of sensitized solar cells. J Phys Chem C 118: 22873–22880. doi: 10.1021/jp505787z
    [12] Antoniadou M, Lianos P (2010) Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell. Appl Catal B 99: 307–313.
    [13] Dou B, Song Y, Wang C, et al. (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges. Renew Sust Energ Rev 30: 950–960. doi: 10.1016/j.rser.2013.11.029
    [14] Sfaelou S, Zhuang X, Feng X, et al. (2015) Sulfur-doped Porous Carbon Nanosheets as High Performance Electrocatalysts in PhotoFuelCells. RSC Adv 5: 27953–27963. doi: 10.1039/C5RA02027A
    [15] Kumagai H, Minegishi T, Sato N, et al. (2015) Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes. J Mater Chem A 3: 8300–8307. doi: 10.1039/C5TA01058F
    [16] Lin C-Y, Mersch D, Jefferson DA, et al. (2014) Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes. Chem Sci 5: 4906–4913. doi: 10.1039/C4SC01811G
    [17] Kibsgaard J, Jaramillo TF (2014) Molybdenum Phosphosulfide: An active, acid-stable, earth-abuntant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53: 14433–14437. doi: 10.1002/anie.201408222
    [18] Antoniadou M, Sfaelou S, Dracopoulos V, et al. (2014) Platinum-free photoelectrochemical water splitting. Catal Commun 43: 72–74. doi: 10.1016/j.catcom.2013.09.010
    [19] Buhler N, Meier K, Reber J-F (1984) Photochemical Hydrogen Production with Cadmium Sulfide Suspensions. J Phys Chem 88: 3261–3268. doi: 10.1021/j150659a025
    [20] Daskalaki VM, Panagiotopoulou P, Kondarides DI (2011) Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming. Chem Eng J 170: 433–439. doi: 10.1016/j.cej.2010.11.093
    [21] Sakata T, Kawai T (1981) Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem Phys Lett 80: 341–344. doi: 10.1016/0009-2614(81)80121-2
    [22] Antoniadou M, Kondarides DI, Dionysiou DD, et al. (2012) Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells. J Phys Chem 116: 16901–16909.
    [23] Kondarides DI, Daskalaki VM, Patsoura A, et al. (2008) Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catal Lett 122: 26–32. doi: 10.1007/s10562-007-9330-3
    [24] Rossetti I (2012) Review article: Hydrogen production by photoreforming of renewable substrates. ISRN Chem Eng 2012 Article ID 964936: 21 pages, doi:10.5402/2012/964936.
    [25] Panagiotopoulou P, Antoniadou M, Kondarides DI, et al. (2010) Aldol Condensation Products During Photocatalytic Oxidation of Ethanol in a Photoelectrochemical Cell. Appl Catal B 100: 124–132. doi: 10.1016/j.apcatb.2010.07.021
    [26] Antoniadou M, Panagiotopoulou P, Kondarides DI, et al. (2012) Photocatalysis and Photoelectrocatalysis Using Nanocrystalline Titania Alone or Combined with Pt, RuO2 or NiO Co-Catalysts. J Appl Electrochem 42: 737–743. doi: 10.1007/s10800-012-0408-2
    [27] Maeda Y, Fujishima A, Honda K (1981) The Investigation of Current Doubling Reactions on Semiconductor Photoelectrodes by Temperature Change Measurements. J Electrochem Soc 178: 1731–1734.
    [28] Kalamaras E, Lianos P (2015) Current doubling effect revisited: Current multiplication in a PhotoFuelCell. J Electroanal Chem 751: 37–42. doi: 10.1016/j.jelechem.2015.05.029
    [29] Antoniadou M, Han C, Sfaelou S, et al. (2013) Solar energy conversion using Photo-Fuel-Cells. Sci Adv Mater 5: 1–8. doi: 10.1166/sam.2013.1423
    [30] Antoniadou M, Sfaelou S, Lianos P (2014) Quantum dot sensitized titania for photo-fuel-cell and for water splitting operation in the presence of sacrificial agents. Chem Eng J 254: 245–251. doi: 10.1016/j.cej.2014.05.106
    [31] Antoniadou M, Lianos P (2009) Near Ultraviolet and Visible light photoelectrochemical degradation of organic substances producing electricity and hydrogen. J Photochem Photobiol A 204: 69–74. doi: 10.1016/j.jphotochem.2009.02.001
    [32] Monfort O, Pop L-C, Sfaelou S, et al. (2016) Photoelectrocatalytic hydrogen production by water splitting using BiVO4 photoanodes. Chem Eng J 286: 91–97. doi: 10.1016/j.cej.2015.10.043
    [33] Selli E, Chiarello GL, Quartarone E, et al. (2007) A photocatalytic water splitting device for separate hydrogen and oxygen evolution. Chem Commun 5022–5024.
    [34] Gan J, Lu X, Tong Y (2014) Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6: 7142–7164. doi: 10.1039/c4nr01181c
    [35] Horiuchi Y, Toyao T, Takeuchi M, et al. (2013) Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion-from semiconducting TiO2 to MOF/PCP photocatalysts. Phys Chem Chem Phys 15: 13243–13253. doi: 10.1039/c3cp51427g
    [36] Bhatt MD, Lee JS (2015) Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells. J Mater Chem A 3: 10632–10659. doi: 10.1039/C5TA00257E
    [37] Pop LC, Dracopoulos V, Lianos P (2015) Photoelectrocatalytic hydrogen production using nanoparticulate titania and a novel Pt/Carbon electrocatalyst: The concept of the “Photoelectrocatalytic Leaf”. Appl Surf Sci 333: 147–151.
    [38] Gao P, Grätzel M, Nazeeruddin MK (2014) Organohalide lead perovskites for photovoltaic applications. Energy Environ Sci 7: 2448–2463.
    [39] Alexander BD, Kulesza PJ, Solarska R, et al. (2008) Metal Oxide photoanodes for solar hydrogen production. J Mater Chem 18: 2298–2303. doi: 10.1039/b718644d
    [40] Fujimoto I, Wang N, Saito R, et al. (2014) WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting. Int J Hydrogen Energ 39: 2454–2461. doi: 10.1016/j.ijhydene.2013.08.114
    [41] Zhu T, Chong MN, Chan ES (2014) Nanostructured Tungsten Trioxide Thin Films Synthesized For Photoelectrocatalytic Water Oxidation: A Review. Chem Sus Chem 7: 2974–2997. doi: 10.1002/cssc.201402089
    [42] Liu X, Wang F, Wang Q (2012) Nanostructure-Based WO3 Photoanodes For Photoelectrochemical Water Splitting. Phys Chem Chem Phys 14: 7894–7911. doi: 10.1039/c2cp40976c
    [43] Mirbagheri N, Wang D, Peng C, et al. (2014) Visible Light Driven Photoelectrochemical Water Oxidation by Zn- and Ti-Doped Hematite Nanostructures. ACS Catal 4: 2006–2015. doi: 10.1021/cs500372v
    [44] Mishra M, Chun D-M (2015) α-Fe2O3 as a photocatalytic material: A review. Appl Catal A 498: 126–141. doi: 10.1016/j.apcata.2015.03.023
    [45] Wang W, Tade MO, Shao Z (2015) Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev 44: 5371–5408.
    [46] Brüller S, Liang H-W, Kramm UI, et al. (2015) Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. J Mater Chem 3: 23799–23808.
    [47] Xi FX, Liu HC, Li WP, et al. (2015) Fabricating CuS counter electrode for quantum dots-sensitized solar cell via electro-deposition and sulfurization of Cu2O. Electrochim Acta 178: 329–335. doi: 10.1016/j.electacta.2015.08.020
    [48] Balis N, Dracopoulos V, Bourikas K, et al. (2013) Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSewith CoS and CuS counter electrodes. Electrochim Acta 91: 246–252. doi: 10.1016/j.electacta.2013.01.004
    [49] Sayama K, Nomura A, Zou Z, et al. (2003) Photoelectrochemical decomposition of water on Nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 2908–2909.
    [50] Liu X, Wang F, Wang Q (2012) Nanostructure-Based WO3 Photoanodes For Photoelectrochemical Water Splitting. Phys Chem Chem Phys 14: 7894–7911. doi: 10.1039/c2cp40976c
    [51] Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using Titania nanotube array photoanodes. Sol Energy Mater Sol Cells 92: 374–384. doi: 10.1016/j.solmat.2007.11.006
  • This article has been cited by:

    1. A. C. Queiroz, E. A. Ticianelli, Photoelectrochemical Oxidation of Ethanol under Visible Light Irradiation on TaON-Based Catalysts, 2018, 165, 0013-4651, F123, 10.1149/2.0131803jes
    2. Hao-Nan Wang, Xin Chen, Rong Chen, Xun Zhu, Qiang Liao, Ding-Ding Ye, Biao Zhang, You-Xu Yu, Wei Zhang, Jin-Wang Li, A ternary hybrid CuS/Cu2O/Cu nanowired photocathode for photocatalytic fuel cell, 2019, 435, 03787753, 226766, 10.1016/j.jpowsour.2019.226766
    3. Xin Chen, Rong Chen, Xun Zhu, Qiang Liao, Yuxin Zhang, Dingding Ye, Biao Zhang, Youxu Yu, Jinwang Li, A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity, 2019, 372, 00219517, 182, 10.1016/j.jcat.2019.02.031
    4. Danilo Russo, Marica Muscetta, Laura Clarizia, Ilaria Di Somma, Corrado Garlisi, Raffaele Marotta, Giovanni Palmisano, Roberto Andreozzi, Photoactivated Fe(III)/Fe(II)/WO3–Pd fuel cell for electricity generation using synthetic and real effluents under visible light, 2020, 147, 09601481, 1070, 10.1016/j.renene.2019.09.080
    5. Noor Ahmed Nahyoon, Lifen Liu, Kané Rabé, Sarwan Ahmed Nahyoon, Azmat Hussain Abro, Fenglin Yang, Efficient degradation of rhodamine B with sustainable electricity generation in a photocatalytic fuel cell using visible light Ag3PO4/Fe/GTiP photoanode and ZnIn2S4 photocathode, 2019, 96, 18761070, 137, 10.1016/j.jtice.2018.10.019
    6. Jiayue Hu, Chaokai Yu, Chunyang Zhai, Sujuan Hu, Yuan Wang, Nianqing Fu, Lixi Zeng, Mingshan Zhu, 2D/1D heterostructure of g-C3N4 nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol, 2018, 315, 09205861, 36, 10.1016/j.cattod.2018.02.043
    7. Mingshan Zhu, Chunyang Zhai, Mingjuan Sun, Yufang Hu, Bo Yan, Yukou Du, Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation, 2017, 203, 09263373, 108, 10.1016/j.apcatb.2016.10.012
    8. Mingjuan Sun, Jiayue Hu, Chunyang Zhai, Mingshan Zhu, Jianguo Pan, A p-n heterojunction of CuI/TiO2 with enhanced photoelectrocatalytic activity for methanol electro-oxidation, 2017, 245, 00134686, 863, 10.1016/j.electacta.2017.06.035
    9. Jiayue Hu, Chunyang Zhai, Lixi Zeng, Yukou Du, Mingshan Zhu, Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO4-modified electrode under visible light irradiation, 2018, 8, 2044-4753, 3562, 10.1039/C8CY00864G
    10. Bing Zhang, Fan Yang, Hongchen Liu, Linan Yan, Wang Yang, Chong Xu, Shuo Huang, Qi Li, Weijie Bao, Bei Liu, Yongfeng Li, Assembling Graphene-Encapsulated Pd/TiO2 Nanosphere with Hierarchical Architecture for High-Performance Visible-Light-Assisted Methanol Electro-Oxidation Material, 2019, 58, 0888-5885, 19486, 10.1021/acs.iecr.9b03619
    11. Haifeng Gao, Chunyang Zhai, Chen Yuan, Zhao-Qing Liu, Mingshan Zhu, Snowflake-like Cu2S as visible-light-carrier for boosting Pd electrocatalytic ethylene glycol oxidation under visible light irradiation, 2020, 330, 00134686, 135214, 10.1016/j.electacta.2019.135214
    12. Wan Fadhilah Khalik, Li-Ngee Ho, Soon-An Ong, Chun-Hong Voon, Yee-Shian Wong, Sara Yasina Yusuf, NikAthirah Yusoff, Sin-Li Lee, Reactive Black 5 as electron donor and/or electron acceptor in dual chamber of solar photocatalytic fuel cell, 2018, 202, 00456535, 467, 10.1016/j.chemosphere.2018.03.113
    13. Panagiotis Lianos, Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen, 2017, 210, 09263373, 235, 10.1016/j.apcatb.2017.03.067
    14. Hongbin Yu, Yanan Xue, Ying Lu, Xinhong Wang, Suiyi Zhu, Weichao Qin, Mingxin Huo, Novel application of a Z-scheme photocatalyst of Ag3PO4@g-C3N4 for photocatalytic fuel cells, 2020, 254, 03014797, 109738, 10.1016/j.jenvman.2019.109738
    15. Ronald Vargas, David Carvajal, Brunella Galavis, Alberto Maimone, Lorean Madriz, Benjamín R. Scharifker, High-Field Growth of Semiconducting Anodic Oxide Films on Metal Surfaces for Photocatalytic Application, 2019, 2019, 1110-662X, 1, 10.1155/2019/2571906
    16. Olivier Monfort, Olivier Monfort, Panagiotis Lianos, Gustav Plesch, 2018, 9781119460008, 219, 10.1002/9781119460008.ch6
    17. Lihua He, Quanbing Liu, Shenjie Zhang, Xiangtian Zhang, Chunli Gong, Honghui Shu, Guangjin Wang, Hai Liu, Sheng Wen, Bingqing Zhang, High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application, 2018, 94, 13882481, 18, 10.1016/j.elecom.2018.07.021
    18. Y.H. Kwok, Y. Wang, M. Wu, F. Li, Y. Zhang, H. Zhang, D.Y.C. Leung, A dual fuel microfluidic fuel cell utilizing solar energy and methanol, 2019, 409, 03787753, 58, 10.1016/j.jpowsour.2018.10.095
    19. Bingzhi Qian, Qian Xu, Yang Wu, Yu Zhang, Hui Li, Yang Wang, Baoxin Wang, Shuo Li, Xi-Ming Song, A highly efficient photocatalytic methanol fuel cell based on non-noble metal photoelectrodes: Study on its energy band engineering via experimental and density functional theory method, 2020, 478, 03787753, 228756, 10.1016/j.jpowsour.2020.228756
    20. Tayebeh Parvizi, Jalal Basiri Parsa, High-efficient photocatalytic fuel cell integrated with periodate activation for electricity production by degradation of refractory organics, 2021, 484, 03787753, 229264, 10.1016/j.jpowsour.2020.229264
    21. Chunyang Zhai, Jiayue Hu, Mingjuan Sun, Mingshan Zhu, Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media, 2018, 430, 01694332, 578, 10.1016/j.apsusc.2017.06.175
    22. Yuan Wang, Jiayue Hu, Chunyang Zhai, Haifeng Gao, Zhao-Qing Liu, Yukou Du, Mingshan Zhu, CdS Quantum Dots Sensitized 2D La 2 Ti 2 O 7 Nanosheets as Support for Visible Light‐Assisted Electrocatalytic Methanol Oxidation in Alkaline Medium , 2019, 7, 2194-4288, 1800539, 10.1002/ente.201800539
    23. Yasser Vasseghian, Alireza Khataee, Elena-Niculina Dragoi, Masoud Moradi, Samaneh Nabavifard, Gea Oliveri Conti, Amin Mousavi Khaneghah, Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review, 2020, 13, 18785352, 8458, 10.1016/j.arabjc.2020.07.016
    24. Chunyang Zhai, Mingjuan Sun, Lixi Zeng, Mianqiang Xue, Jianguo Pan, Yukou Du, Mingshan Zhu, Construction of Pt/graphitic C3N4/MoS2 heterostructures on photo-enhanced electrocatalytic oxidation of small organic molecules, 2019, 243, 09263373, 283, 10.1016/j.apcatb.2018.10.047
    25. Lihua He, Zhe Yang, Chunli Gong, Hai Liu, Fei Zhong, Fuqiang Hu, Yaoyao Zhang, Guangjin Wang, Bingqing Zhang, The dual-function of photoelectrochemical glucose oxidation for sensor application and solar-to-electricity production, 2021, 882, 15726657, 114912, 10.1016/j.jelechem.2020.114912
    26. Ioannis Papagiannis, Nikolaos Balis, Vassilios Dracopoulos, Panagiotis Lianos, Photoelectrocatalytic Hydrogen Peroxide Production Using Nanoparticulate WO3 as Photocatalyst and Glycerol or Ethanol as Sacrificial Agents, 2019, 8, 2227-9717, 37, 10.3390/pr8010037
    27. Wan Fadhilah Khalik, Li-Ngee Ho, Soon-An Ong, Chun-Hong Voon, Yee-Shian Wong, Sara Yasina Yusuf, Nik Athirah Yusoff, Sin-Li Lee, Enhancement of simultaneous batik wastewater treatment and electricity generation in photocatalytic fuel cell, 2018, 25, 0944-1344, 35164, 10.1007/s11356-018-3414-z
    28. Jiayue Hu, Chunyang Zhai, Chaokai Yu, Lixi Zeng, Zhao-Qing Liu, Mingshan Zhu, Visible light-enhanced electrocatalytic alcohol oxidation based on two dimensional Pt-BiOBr nanocomposite, 2018, 524, 00219797, 195, 10.1016/j.jcis.2018.03.104
    29. Amit Kumar, Priya Rittika Thakur, Gaurav Sharma, Mu. Naushad, Anamika Rana, Genene Tessema Mola, Florian J. Stadler, Carbon nitride, metal nitrides, phosphides, chalcogenides, perovskites and carbides nanophotocatalysts for environmental applications, 2019, 17, 1610-3653, 655, 10.1007/s10311-018-0814-8
    30. Fatemeh Safdari, Amir Nasser Shamkhali, Mohsen Tafazzoli, Gholamabbas Parsafar, Adsorption of pollutant cations from their aqueous solutions on graphitic carbon nitride explored by density functional theory, 2018, 260, 01677322, 423, 10.1016/j.molliq.2018.03.114
    31. Jiayue Hu, Mingjuan Sun, Xiaoyan Cai, Chunyang Zhai, Junying Zhang, Mingshan Zhu, Two dimensional perovskite La 2 Ti 2 O 7 nanosheet as Pt catalyst support for photo-assisted methanol oxidation reaction, 2017, 80, 18761070, 231, 10.1016/j.jtice.2017.07.001
    32. Ronald Vargas, David Carvajal, Lorean Madriz, Benjamín R. Scharifker, Chemical kinetics in solar to chemical energy conversion: The photoelectrochemical oxygen transfer reaction, 2020, 6, 23524847, 2, 10.1016/j.egyr.2019.10.004
    33. Ermete Antolini, Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review, 2018, 237, 09263373, 491, 10.1016/j.apcatb.2018.06.029
    34. Panagiotis Marios Adamopoulos, Ioannis Papagiannis, Dimitrios Raptis, Panagiotis Lianos, Photoelectrocatalytic Hydrogen Production Using a TiO2/WO3 Bilayer Photocatalyst in the Presence of Ethanol as a Fuel, 2019, 9, 2073-4344, 976, 10.3390/catal9120976
    35. Prasenjit Bhunia, Kingshuk Dutta, 2020, Chapter 2, 978-3-030-17637-2, 19, 10.1007/978-3-030-17638-9_2
    36. Ermete Antolini, External abiotic glucose fuel cells, 2021, 5, 2398-4902, 5038, 10.1039/D1SE00727K
    37. Breno D. Queiroz, Jesum A. Fernandes, Cauê A. Martins, Heberton Wender, Photocatalytic fuel cells: From batch to microfluidics, 2022, 10, 22133437, 107611, 10.1016/j.jece.2022.107611
    38. Lihua He, Xiuling Ma, Yunbin Li, Chunli Gong, Hai Liu, Honghui Shu, Jing Ni, Bingqing Zhang, Shengchang Xiang, A novel self-powered sensor based on Ni(OH)2/Fe2O3 photoanode for glucose detection by converting solar energy into electricity, 2022, 907, 09258388, 164132, 10.1016/j.jallcom.2022.164132
    39. Degang Bu, Munkhbayar Batmunkh, Yu Zhang, Yuewen Li, Bingzhi Qian, Yalin Lan, Xing Hou, Shuo Li, Baohua Jia, Xi-Ming Song, Tianyi Ma, Rechargeable sunlight-promoted Zn-air battery constructed by bifunctional oxygen photoelectrodes: Energy-band switching between ZnO/Cu2O and ZnO/CuO in charge-discharge cycles, 2022, 433, 13858947, 133559, 10.1016/j.cej.2021.133559
    40. Qian Xu, Bingzhi Qian, Yu Zhang, Hui Li, Yang Wu, Heterostructure Fe2O3/BiVO4 as a Photoanode for a Visible-Light-Responsive Photocatalytic Fuel Cell, 2022, 5, 2574-0962, 13562, 10.1021/acsaem.2c02277
    41. Amir H. Navidpour, Ahmad Hosseinzadeh, John L. Zhou, Zhenguo Huang, Progress in the application of surface engineering methods in immobilizing TiO2 and ZnO coatings for environmental photocatalysis, 2021, 0161-4940, 1, 10.1080/01614940.2021.1983066
    42. Xuan Minh Chau Ta, Rahman Daiyan, Thi Kim Anh Nguyen, Rose Amal, Thanh Tran‐Phu, Antonio Tricoli, Alternatives to Water Photooxidation for Photoelectrochemical Solar Energy Conversion and Green H 2 Production , 2022, 12, 1614-6832, 2201358, 10.1002/aenm.202201358
    43. Volodymyr Morgunov, Serhii Lytovchenko, Volodymyr Chyshkala, Dmytro Riabchykov, Dementii Matviienko, Comparison of Anatase and Rutile for Photocatalytic Application: the Short Review, 2021, 2312-4334, 18, 10.26565/2312-4334-2021-4-02
    44. Bingzhi Qian, Yu Zhang, Xing Hou, Degang Bu, Kai Zhang, Yalin Lan, Yuewen Li, Shuo Li, Tianyi Ma, Xi‐Ming Song, A Dual Photoelectrode Photoassisted Fe–Air Battery: The Photo‐Electrocatalysis Mechanism Accounting for the Improved Oxygen Evolution Reaction and Oxygen Reduction Reaction of Air Electrodes, 2022, 18, 1613-6810, 2103933, 10.1002/smll.202103933
    45. Xing Hou, Yu Zhang, Chengzhe Cui, Chunkun Lin, Yuewen Li, Degang Bu, Ge Yan, Daliang Liu, Qiong Wu, Xi-Ming Song, Photo-assisted Al-air batteries based on gel-state electrolyte, 2022, 533, 03787753, 231377, 10.1016/j.jpowsour.2022.231377
    46. Hari Bhakta Oli, Allison A. Kim, Mira Park, Deval Prasad Bhattarai, Bishweshwar Pant, Photocatalytic Fuel Cells for Simultaneous Wastewater Treatment and Power Generation: Mechanisms, Challenges, and Future Prospects, 2022, 15, 1996-1073, 3216, 10.3390/en15093216
    47. Sara M. Hamed, Abdallah F. Zedan, Hosam H. Abdelhady, Noha M. Mohamed, Amany M. Fekry, Graphitic carbon nitride/titania nanotube arrays for photoelectrochemical oxidation of methanol under visible light, 2024, 90, 03603199, 918, 10.1016/j.ijhydene.2024.09.292
    48. Saptarshi Roy, Jnyanashree Darabdhara, Md. Ahmaruzzaman, Sustainable degradation of pollutants, generation of electricity and hydrogen evolution via photocatalytic fuel cells: An Inclusive Review, 2023, 236, 00139351, 116702, 10.1016/j.envres.2023.116702
    49. Luiz Eduardo Gomes, Gustavo M. Morishita, Vitória E. M. Icassatti, Thalita F. da Silva, Amilcar Machulek Junior, Ingrid Rodríguez-Gutiérrez, Flavio Leandro Souza, Cauê A. Martins, Heberton Wender, Enhanced Power Generation Using a Dual-Surface-Modified Hematite Photoanode in a Direct Glyphosate Photo Fuel Cell, 2024, 16, 1944-8244, 17453, 10.1021/acsami.3c18643
    50. Felix Blind, Stefan Fränzle, Photo-Oxidation of Various Organic Compounds, Including Pollutants, by Europium (III) in Fuel Cell Systems, 2024, 8, 2305-7084, 121, 10.3390/chemengineering8060121
    51. Laura Valenzuela, Beatriz Villajos, Sara Mesa Medina, Marisol Faraldos, An Overview of the Advantages of Combining Photo- and Electrooxidation Processes in Actual Wastewater Treatment, 2024, 15, 2073-4344, 14, 10.3390/catal15010014
    52. Andreas Katsamitros, Antonios N. Giannakakis, Nikolaos Karamoschos, Nikolaos Karousis, Dimitrios Tasis, Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Evolution, 2025, 0947-6539, 10.1002/chem.202404272
    53. Jia Chee Liu, Antonio Choon Kiat Anak Niang, Meng Guan Tay, Comparison between single‐chamber and dual‐chamber photocatalytic fuel cell on synthetic dye removal efficiency and power generation, 2025, 1747-6585, 10.1111/wej.12965
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10455) PDF downloads(1542) Cited by(53)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog