Review

Surface modification of carbon nanotubes and their nanocomposites for fuel cell applications: A review

  • Received: 16 November 2023 Revised: 23 February 2024 Accepted: 14 March 2024 Published: 28 March 2024
  • Carbon nanotubes (CNTs) have drawn great attention as potential materials for energy conversion and storage systems such as batteries, supercapacitors, and fuel cells. Among these energy conversion and storage systems, the fuel cells had stood out owing to their high-power density, energy conversion efficiency and zero greenhouse gasses emission. In fuel cells, CNTs have been widely studied as catalyst support, bipolar plates and electrode material due to their outstanding mechanical strength, chemical stability, electrical and thermal conductivity, and high specific surface area. The use of CNT has been shown to enhance the electrocatalytic performance of the catalyst, corrosion resistivity, improve the transmission performance of the fuel cell and reduce the cost of fuel cells. The use of CNTs in fuel cells has drastically reduced the use of noble metals. However, the major drawback to the utilization of pristine CNTs in fuel cells are; poor dispersion, agglomeration, and insolubility of CNTs in most solvents. Surface engineering of CNTs and CNT nanocomposites has proven to remarkably remedy these challenges and significantly enhanced the electrochemical performance of fuel cells. This review discusses the different methods of surface modification of CNTs and their nanocomposite utilized in fuel cell applications. The effect of CNTs in improving the performance of fuel cell catalyst, membrane electrode assembly and bipolar plates of fuel cells. The interaction between the CNTs catalyst support and the catalyst is also reviewed. Lastly, the authors outlined the challenges and recommendations for future study of surface functionalized CNTs composite for fuel cell application.

    Citation: Okechukwu Okafor, Abimbola Popoola, Olawale Popoola, Samson Adeosun. Surface modification of carbon nanotubes and their nanocomposites for fuel cell applications: A review[J]. AIMS Materials Science, 2024, 11(2): 369-414. doi: 10.3934/matersci.2024020

    Related Papers:

  • Carbon nanotubes (CNTs) have drawn great attention as potential materials for energy conversion and storage systems such as batteries, supercapacitors, and fuel cells. Among these energy conversion and storage systems, the fuel cells had stood out owing to their high-power density, energy conversion efficiency and zero greenhouse gasses emission. In fuel cells, CNTs have been widely studied as catalyst support, bipolar plates and electrode material due to their outstanding mechanical strength, chemical stability, electrical and thermal conductivity, and high specific surface area. The use of CNT has been shown to enhance the electrocatalytic performance of the catalyst, corrosion resistivity, improve the transmission performance of the fuel cell and reduce the cost of fuel cells. The use of CNTs in fuel cells has drastically reduced the use of noble metals. However, the major drawback to the utilization of pristine CNTs in fuel cells are; poor dispersion, agglomeration, and insolubility of CNTs in most solvents. Surface engineering of CNTs and CNT nanocomposites has proven to remarkably remedy these challenges and significantly enhanced the electrochemical performance of fuel cells. This review discusses the different methods of surface modification of CNTs and their nanocomposite utilized in fuel cell applications. The effect of CNTs in improving the performance of fuel cell catalyst, membrane electrode assembly and bipolar plates of fuel cells. The interaction between the CNTs catalyst support and the catalyst is also reviewed. Lastly, the authors outlined the challenges and recommendations for future study of surface functionalized CNTs composite for fuel cell application.



    加载中


    [1] Fan L, Tu Z, Chan S (2021) Recent development of hydrogen and fuel cell technologies: A review. Energy Rep 7: 8421–8446. https://doi.org/10.1016/j.egyr.2021.08.003 doi: 10.1016/j.egyr.2021.08.003
    [2] Wu Z, Dang D, Tian X (2019) Designing robust support for Pt alloy nanoframes with durable oxygen reduction reaction activity. ACS Appl Mater Interfaces 11: 9117–9124. https://doi.org/10.1021/acsami.8b21459 doi: 10.1021/acsami.8b21459
    [3] Su H, Hu Y (2021) Recent advances in graphene‐based materials for fuel cell applications. Energy Sci Eng 9: 958–983. https://doi.org/10.1002/ese3.833 doi: 10.1002/ese3.833
    [4] Hou J, Yang M, Ke C, et al. (2020) Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem 2:100023. https://doi.org/10.1016/j.enchem.2019.100023 doi: 10.1016/j.enchem.2019.100023
    [5] Kanninen P, Eriksson B, Davodi F, et al. (2020) Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes. Electrochim Acta 332: 135384. https://doi.org/10.1016/j.electacta.2019.135384 doi: 10.1016/j.electacta.2019.135384
    [6] Li X, Li Y, Xie S, et al. (2022) Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem Eng J 427: 131799. https://doi.org/10.1016/j.cej.2021.131799 doi: 10.1016/j.cej.2021.131799
    [7] Roy R, Soundiraraju B, Thomas D, et al. (2017) New insights into the spectral, thermal and morphological analysis of time dependent structural changes during open end functionalization of single walled carbon nanotubes. New J Chem 20: 12159–12171. https://doi.org/10.1039/C7NJ01843F doi: 10.1039/C7NJ01843F
    [8] Ates M, Eker A, Eker B (2017) Carbon nanotube-based nanocomposites and their applications. J Adhes Sci Technol 31: 1977–1997. https://doi.org/10.1080/01694243.2017.1295625 doi: 10.1080/01694243.2017.1295625
    [9] Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58. https://www.nature.com/articles/354056a0/metrics
    [10] Bilalis P, Katsigiannopoulos D, Avgeropoulos A, et al. (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4: 2911–2934. http://doi.org/10.1039/C3RA44906H doi: 10.1039/C3RA44906H
    [11] Soni S, Thomas B, Kar VA (2020) A comprehensive review on CNTs and CNT-reinforced composites: Syntheses, characteristics and applications. Mater Today Commun 25: 101546. https://doi.org/10.1016/j.mtcomm.2020.101546 doi: 10.1016/j.mtcomm.2020.101546
    [12] Chen J, Liu B, Gao X, et al. (2018) Review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 8: 28048–28085. http://doi.org/10.1039/C8RA04205E doi: 10.1039/C8RA04205E
    [13] Verma B, Sewani H, Balomajumder C (2020) Synthesis of carbon nanotubes via chemical vapor deposition: An advanced application in the management of electroplating effluent. Environ Sci Pollut Res 27: 14007–14018. https://doi.org/10.1007/s11356-020-08002-0 doi: 10.1007/s11356-020-08002-0
    [14] Krishnamurthy G, Namitha R, Agarwal S (2014) Synthesis of carbon nanotubes and carbon spheres and study of their hydrogen storage property by electrochemical method. Procedia Mater Sci 5:1056–1065. https://doi.org/10.1016/j.mspro.2014.07.397 doi: 10.1016/j.mspro.2014.07.397
    [15] Han S, Yang J, Li X, et al. (2020) Flame synthesis of super hydrophilic carbon nanotubes/Ni foam decorated with Fe2O3 nanoparticles for water purification via solar steam generation. ACS Appl Mater Interfaces 12: 13229–13238. https://doi.org/10.1021/acsami.0c00606 doi: 10.1021/acsami.0c00606
    [16] Toleukhanuly Y, Kuttybaevna K, Muratbekovna K, et al. (2020) Synthesis of carbon nanotubes by the electric arc-discharge method. Series Chem Technol 5: 126–133. http://doi.org/10.32014/2020.2518-1491.89 doi: 10.32014/2020.2518-1491.89
    [17] Cheng Y, Zhao S, Johannessen B, et al. (2018) Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv Mater 13: 1706287. https://doi.org/10.1002/adma.201706287 doi: 10.1002/adma.201706287
    [18] Ismail R, Mousa A, Amin M (2018) Synthesis of hybrid Au@PbI2 core-shell nanoparticles by pulsed laser ablation in ethanol. Mater Res Express 5: 115024. http://doi.org/10.1088/2053-1591/aadf1b doi: 10.1088/2053-1591/aadf1b
    [19] Alheshibri M, Elsayed K, Haladu S, et al. (2022) Synthesis of Ag nanoparticles-decorated on CNTs/TiO2 nanocomposite as efficient photocatalysts via nanosecond pulsed laser ablation. Opt Laser Technol 155: 108443. https://doi.org/10.1016/j.optlastec.2022.108443 doi: 10.1016/j.optlastec.2022.108443
    [20] Mubarak N, Abdullah E, Jayakumar N, et al. (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20: 1186–1197. https://doi.org/10.1016/j.jiec.2013.09.001 doi: 10.1016/j.jiec.2013.09.001
    [21] Ismail R, Mohsin M, Ali A, et al. (2020) Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Physica E Low Dimens Syst Nanostruct 119: 113997. https://doi.org/10.1016/j.physe.2020.113997 doi: 10.1016/j.physe.2020.113997
    [22] Eatemadi A, Daraee H, Karimkhanloo H, et al. (2014) Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9: 393. http://www.nanoscalereslett.com/content/9/1/393
    [23] Joselevich E, Dai H, Liu J, et al. (2008) Carbon nanotube synthesis and organization, In: Jorio A, Dresselhaus G, Dresselhaus M, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Berlin: Springer. http://doi.org/10.1007/978-3-540-72865-8_4
    [24] Ganguly D, Sundara R, Ramanujam K (2018) Chemical vapor deposition-grown nickel-encapsulated N-doped carbon nanotubes as a highly active oxygen reduction reaction catalyst without direct metal–nitrogen coordination. ACS Omega 3: 13609–13620. https://doi.org/10.1021/acsomega.8b01565 doi: 10.1021/acsomega.8b01565
    [25] Pandey P, Dahiya M (2016) Carbon nanotubes: Types, methods of preparation and applications. Int J Pharm Sci Res 4: 15–21.
    [26] Ahmad M, Silva SR (2020) Low temperature growth of carbon nanotubes–A review. Carbon 158: 24–44. https://doi.org/10.1016/j.carbon.2019.11.061 doi: 10.1016/j.carbon.2019.11.061
    [27] Halonen N, Sapi A, Nagy L, et al. (2011) Low‐temperature growth of multi‐walled carbon nanotubes by thermal CVD. Phys Status Solidi B 248: 2500–2503. https://doi.org/10.1002/pssb.201100137 doi: 10.1002/pssb.201100137
    [28] Simionescu O, Brîncoveanu O, Romaniţan C, et al. (2022) Step-by-step development of vertically aligned carbon nanotubes by plasma-enhanced chemical vapor deposition. Coatings 12: 943. https://doi.org/10.3390/coatings12070943 doi: 10.3390/coatings12070943
    [29] Shoukat R, Khan M (2022) Carbon nanotubes/nanofibers (CNTs/CNFs): A review on state of the art synthesis methods. Microsyst Technol 28: 885–890. https://doi.org/10.1007/s00542-022-05263-2 doi: 10.1007/s00542-022-05263-2
    [30] Shoukat R, Muhammad I (2021) Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst Technol 27: 4183–4192. https://doi.org/10.1007/s00542-021-05211-6 doi: 10.1007/s00542-021-05211-6
    [31] Jagadeesan A, Thangavelu K, Dhananjeyan V (2020) Carbon nanotubes: Synthesis, properties and applications, In: Pham P, Goel P, Kumar S, et al. 21st Century Surface Science-a Handbook, London: Intech Open. http://dx.doi.org/10.5772/intechopen.92995
    [32] Punetha V, Rana S, Yoo H, et al. (2017) Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog Polym Sci 67: 1–47. https://doi.org/10.1016/j.progpolymsci.2016.12.010 doi: 10.1016/j.progpolymsci.2016.12.010
    [33] Luais E, Thobie-Gautier C, Tailleur A, et al. (2010) Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors. Electrochim Acta 55: 7916–7922. https://doi.org/10.1016/j.electacta.2010.02.070 doi: 10.1016/j.electacta.2010.02.070
    [34] Steffen T, Fontana L, Hammer P, et al. (2019) Carbon nanotube plasma functionalization: The role of carbon nanotube/maleic anhydride solid premix. Appl Surf Sci 491: 405–410. https://doi.org/10.1016/j.apsusc.2019.06.176 doi: 10.1016/j.apsusc.2019.06.176
    [35] Yang N, Chen X, Ren T, et al. (2015) Carbon nanotube based biosensors. Sensor Actuat B-Chem 207: 690–715. https://doi.org/10.1016/j.snb.2014.10.040
    [36] Ribeiro B, Botelho E, Costa M, et al. (2017) Carbon nanotube buckypaper reinforced polymer composites: A review. Polímeros 27: 247–255. https://doi.org/10.1590/0104-1428.03916 doi: 10.1590/0104-1428.03916
    [37] Janudin N, Abdullah N, Yunus W, et al. (2019) Carbon nanofibers functionalized with amide group for ammonia gas detection. AIP Conf Proc 2068: 020061. https://doi.org/10.1063/1.5089360 doi: 10.1063/1.5089360
    [38] Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110: 5366–5397. https://doi.org/10.1021/cr100018g doi: 10.1021/cr100018g
    [39] Zhang J, Zou H, Qing Q, et al. (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107: 3712–3718. https://doi.org/10.1021/jp027500u doi: 10.1021/jp027500u
    [40] Chen J, Hamon M, Hu H, et al. (1998) Solution properties of single-walled carbon nanotubes. Science 282: 95–98. http://doi.org/10.1126/science.282.5386.95 doi: 10.1126/science.282.5386.95
    [41] Goyanes S, Rubiolo G, Salazar A, et al. (2007) Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam Relat Mater 16: 412–417. https://doi.org/10.1016/j.diamond.2006.08.021 doi: 10.1016/j.diamond.2006.08.021
    [42] Malikov E, Akperov O, Muradov M, et al. (2014) Oxidation of multiwalled carbon nanotubes using different oxidation agents like nitric acid and potassium permanganate. News Baku University 4: 49–59.
    [43] Abdelkader V, Scelfo S, García-Gallarín C, et al. (2013) Carbon tetrachloride cold plasma for extensive chlorination of carbon nanotubes. J Phys Chem C 117: 16677–16685. https://doi.org/10.1021/jp404390h doi: 10.1021/jp404390h
    [44] Zhou Z, Orcutt E, Anderson H, et al. (2019) Hydrogen surface modification of a carbon nanotube catalyst for the improvement of ethane oxidative dehydrogenation. Carbon 152: 924–931. https://doi.org/10.1016/j.carbon.2019.06.076 doi: 10.1016/j.carbon.2019.06.076
    [45] Adamska M, Narkiewicz U (2017) Fluorination of carbon nanotubes—A review. J Fluorine Chem 200: 179–189. https://doi.org/10.1016/j.jfluchem.2017.06.018 doi: 10.1016/j.jfluchem.2017.06.018
    [46] Kim J, Jeong E, Lee Y (2016) Characteristics of fluorinated CNTs added carbon foams. Appl Surf Sci 360: 1009–1015. https://doi.org/10.1016/j.apsusc.2015.11.111 doi: 10.1016/j.apsusc.2015.11.111
    [47] Norizan M, Moklis M, Demon S, et al. (2020) Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv 10: 43704–43732. http://doi.org/10.1039/D0RA09438B doi: 10.1039/D0RA09438B
    [48] Sabet S, Mahfuz H, Terentis A, et al. (2018) Effects of POSS functionalization of carbon nanotubes on microstructure and thermomechanical behavior of carbon nanotube/polymer nanocomposites. J Mater Sci 53: 8963–8977. https://doi.org/10.1007/s10853-018-2182-y doi: 10.1007/s10853-018-2182-y
    [49] Wang C, Wu H, Qu F, et al. (2016) Preparation and properties of polyvinyl chloride ultrafiltration membranes blended with functionalized multi‐walled carbon nanotubes and MWCNTs/Fe3O4 hybrids. J Appl Polym Sci 133: 43417. https://doi.org/10.1002/app.43417 doi: 10.1002/app.43417
    [50] Vatanpour V, Madaeni S, Moradian R, et al. (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90: 69–82. https://doi.org/10.1016/j.seppur.2012.02.014 doi: 10.1016/j.seppur.2012.02.014
    [51] Zhu C, Zhang M, Qiao Y, et al. (2010) Fe3O4/TiO2 core/shell nanotubes: Synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114: 16229–16235. https://doi.org/10.1021/jp104445m doi: 10.1021/jp104445m
    [52] Fujigaya T, Nakashima N (2015) Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater 16: 024802. http://doi.org/10.1088/1468-6996/16/2/024802 doi: 10.1088/1468-6996/16/2/024802
    [53] Dai J, Fernandes R, Regev O, et al. (2018) Dispersing carbon nanotubes in water with amphiphiles: Dispersant adsorption, kinetics, and bundle size distribution as defining factors. J Phys Chem C 122: 24386–24393. https://doi.org/10.1021/acs.jpcc.8b06542 doi: 10.1021/acs.jpcc.8b06542
    [54] Wang X, Bai L, Kong S, et al. (2019) Star-shaped supramolecular ionic liquid crystals based on pyridinium salts. Liq Cryst 46: 512–522. https://doi.org/10.1080/02678292.2018.1512166 doi: 10.1080/02678292.2018.1512166
    [55] Manilo MV, Lebovka N, Barany S (2017) Combined effect of cetyltrimethylammonium bromide and laponite platelets on colloidal stability of carbon nanotubes in aqueous suspensions. J Mol Liq 235: 104–110. https://doi.org/10.1016/j.molliq.2017.01.090 doi: 10.1016/j.molliq.2017.01.090
    [56] Kharisov B, Kharissova O, Dimas A (2016) The dispersion, solubilization and stabilization in "solution" of single-walled carbon nanotubes. RSC Adv 6: 68760–68787. http://doi.org/10.1039/C6RA13187E doi: 10.1039/C6RA13187E
    [57] Zeng X, Yang D, Liu H, et al. (2018) Detecting and tuning the interactions between surfactants and carbon nanotubes for their high-efficiency structure separation. Adv Mater Interfaces 5: 1700727. https://doi.org/10.1002/admi.201700727 doi: 10.1002/admi.201700727
    [58] Park M, Park J, Lee J, et al. (2018) Scaling of binding affinities and cooperativities of surfactants on carbon nanotubes. Carbon 139: 427–436. https://doi.org/10.1016/j.carbon.2018.07.003 doi: 10.1016/j.carbon.2018.07.003
    [59] Berber M, Hafez I, Mustafa M (2019) Surface functionalization of carbon nanotubes for energy applications, In: Saleh H, Mohamed El-Sheikh S, Perspective of Carbon Nanotubes, London: Intech Open. https://dx.doi.org/10.5772/intechopen.84479
    [60] Goutam P, Singh D, Giri P, et al. (2011) Enhancing the photostability of poly(3-hexylthiophene) by preparing composites with multiwalled carbon nanotubes. J Phys Chem B 115: 919–924. https://doi.org/10.1021/jp109900m doi: 10.1021/jp109900m
    [61] Li M, Xu P, Yang J, et al. (2011) Synthesis of pyrene-substituted poly(3-hexylthiophene) via postpolymerization and its noncovalent interactions with single-walled carbon nanotubes. J Phys Chem C 115: 4584–4593. https://doi.org/10.1021/jp112330n doi: 10.1021/jp112330n
    [62] Abu-Abdeen M, Ayesh A, Al Jaafari A (2012) Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposites. J Polym Res 19: 1–9. http://doi.org/10.1007/s10965-012-9839-z doi: 10.1007/s10965-012-9839-z
    [63] Hong JH, Park DW, Shim SE (2010) A review on thermal conductivity of polymer composites using carbon-based fillers: Carbon nanotubes and carbon fibers. Carbon Lett 11: 347–356. https://doi.org/10.5714/CL.2010.11.4.347 doi: 10.5714/CL.2010.11.4.347
    [64] Hong SK, Kim D, Lee S, et al. (2015) Enhanced thermal and mechanical properties of carbon nanotube composites through the use of functionalized CNT-reactive polymer linkages and three-roll milling. Compos Part A-Appl S 77: 142–146. https://doi.org/10.1016/j.compositesa.2015.05.035 doi: 10.1016/j.compositesa.2015.05.035
    [65] Dang Z, Wang L, Yin Y, et al. (2007) Giant dielectric permittivities in functionalized carbon‐nanotube/electroactive‐polymer nanocomposites. Adv Mater 19: 852–857. https://doi.org/10.1002/adma.200600703 doi: 10.1002/adma.200600703
    [66] Kharisov B, Kharissova O, Ortiz Mendez U, et al. (2016) Decoration of carbon nanotubes with metal nanoparticles: Recent trends. Synth React Inorg M 46: 55–76. https://doi.org/10.1080/15533174.2014.900635 doi: 10.1080/15533174.2014.900635
    [67] Roy RE, Vijayalakshmi K, Bhuvaneswari S, et al. (2019) Influence of process conditions and effect of functionalization in inducing time dependent polymorphic states in single walled carbon nanotube incorporated poly(vinylidene fluoride). SN Appl Sci 1: 1–15. https://doi.org/10.1007/s42452-019-0862-0 doi: 10.1007/s42452-019-0862-0
    [68] Shirvanimoghaddam K, Abolhasani M, Polisetti B, et al. (2018) Periodical patterning of a fully tailored nanocarbon on CNT for fabrication of thermoplastic composites. Compos Part A-Appl S 107: 304–314. https://doi.org/10.1016/j.compositesa.2018.01.015 doi: 10.1016/j.compositesa.2018.01.015
    [69] Zadehnazari A, Takassi MA (2016) Synthesis of modified multi-walled carbon nanotube poly(benzimidazole-imide) composites: Assessment of morphological and thermo-mechanical properties. Compos Interface 23: 909–924. https://doi.org/10.1080/09276440.2016.1180500 doi: 10.1080/09276440.2016.1180500
    [70] Soldano C (2015) Hybrid metal-based carbon nanotubes: Novel platform for multifunctional applications. Prog Mater Sci 69: 183–212. https://doi.org/10.1016/j.pmatsci.2014.11.001 doi: 10.1016/j.pmatsci.2014.11.001
    [71] Abbas S, Ahmad N, Rana U, et al. (2016) High rate capability and long cycle stability of Cr2O3 anode with CNTs for lithium ion batteries. Electrochim Acta 212: 260–269. https://doi.org/10.1016/j.electacta.2016.06.156 doi: 10.1016/j.electacta.2016.06.156
    [72] Cheng Y, Huang J, Qi H, et al. (2017) Adjusting the chemical bonding of SnO2@CNT composite for enhanced conversion reaction kinetics. Small 13: 1700656. https://doi.org/10.1002/smll.201700656 doi: 10.1002/smll.201700656
    [73] Long H, Guo C, Wei G, et al. (2019) Facile synthesis of various carbon nanotube/metal oxide nanocomposites with high quality. Vacuum 166: 147–150. https://doi.org/10.1016/j.vacuum.2019.05.002 doi: 10.1016/j.vacuum.2019.05.002
    [74] Ling B, Chen A, Liu W, et al. (2018) Simply and rapidly synthesized composites of MnO2 nanosheets anchoring on carbon nanotubes as efficient sulfur hosts for Li-S batteries. Mater Lett 218: 321–324. https://doi.org/10.1016/j.matlet.2018.02.030 doi: 10.1016/j.matlet.2018.02.030
    [75] Zhou J, Song H, Ma L, et al. (2011) Magnetite/graphene nanosheet composites: Interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv 1: 782–791. https://doi.org/10.1039/C1RA00402F doi: 10.1039/C1RA00402F
    [76] Liu X, Li S, Akinwolemiwa B, et al. (2021) Low-crystalline transition metal oxide/hydroxide on MWCNT by Fenton-reaction-inspired green synthesis for lithium ion battery and OER electrocatalysis. Electrochim Acta 387: 138559. https://doi.org/10.1016/j.electacta.2021.138559 doi: 10.1016/j.electacta.2021.138559
    [77] Sigwadi R, Dhlamini M, Mokrani T, et al. (2019) Enhancing the mechanical properties of zirconia/Nafion® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon 5: 02112. https://doi.org/10.1016/j.heliyon.2019.e02112 doi: 10.1016/j.heliyon.2019.e02112
    [78] Mallakpour S, Khadem E (2016) Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications. Chem Eng J 302: 344–367. https://doi.org/10.1016/j.cej.2016.05.038 doi: 10.1016/j.cej.2016.05.038
    [79] Amina Sarfraz, Asif Hassan R, Mojtaba M, et al. (2022) Electrode materials for fuel cells, In: Abdul-Ghani O, Encyclopedia of Smart Materials, Oxford: Elsevier, 2: 341–356. http://doi.org/10.1016/B978-0-12-803581-8.11742-4
    [80] Peera S, Koutavarapu R, Akula S, et al. (2021) Carbon nanofibers as potential catalyst support for fuel cell cathodes: A review. Energ Fuel 35: 11761–11799. https://doi.org/10.1021/acs.energyfuels.1c01439 doi: 10.1021/acs.energyfuels.1c01439
    [81] Ehite E (2016) Study of two-phase flow pressure drop characteristics in proton exchange membrane (PEM) fuel cell flow channels of different geometries. Available from: https://www.proquest.com/openview/ee37bf13dafcc44451cc66df52b78e99/1?cbl = 18750 & pq-origsite = gscholar & parentSessionId = CuRlwPj0ED%2FiNBD58cDez%2B%2FLvT09U2ao4FrBLrP5NcA%3D.
    [82] Penner S (1995) Report of the DOE advanced fuel-cell commercialization working group. Available from: https://www.osti.gov/servlets/purl/810985.
    [83] Larminie J (2003) Fuel Cell Systems Explained, 2 Eds., UK: Wiley, 2: 207–225. Available from: https://sv.20file.org/up1/482_0.pdf.
    [84] Williams M, Strakey J, Sudoval W (2006) US DOE fossil energy fuel cells program. J Power Sources 159: 1241–1247. https://doi.org/10.1016/j.jpowsour.2005.12.085 doi: 10.1016/j.jpowsour.2005.12.085
    [85] Staffell I, Green R, Kendall K (2008) Cost targets for domestic fuel cell CHP. J Power Sources 181: 339–349. https://doi.org/10.1016/j.jpowsour.2007.11.068 doi: 10.1016/j.jpowsour.2007.11.068
    [86] AL-bonsrulah H, Alshukri M, Mikhaeel L, et al. (2021) Design and simulation studies of hybrid power systems based on photovoltaic, wind, electrolyzer, and pem fuel cells. Energies 14: 2643. https://doi.org/10.3390/en14092643 doi: 10.3390/en14092643
    [87] Antolini E (2016) Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl Catal B-Environ 181: 298–313. https://doi.org/10.1016/j.apcatb.2015.08.007 doi: 10.1016/j.apcatb.2015.08.007
    [88] Islam M, Mansoor B, Kollath V, et al. (2022) Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance. Nat Commun 13: 6157. https://doi.org/10.1038/s41467-022-33892-8 doi: 10.1038/s41467-022-33892-8
    [89] Akbari E, Buntat Z (2017) Benefits of using carbon nanotubes in fuel cells: A review. Int J Energy Res 41: 92–102. https://doi.org/10.1002/er.3600 doi: 10.1002/er.3600
    [90] Mu Y, Liang H, Hu J, et al. (2005) Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B 109: 22212–22216. https://doi.org/10.1021/jp0555448 doi: 10.1021/jp0555448
    [91] Hyeon T, Han S, Sung YE, et al. (2003) High‐performance direct methanol fuel cell electrodes using solid‐phase‐synthesized carbon nanocoils. Angew Chem Int Ed 42: 4352–4356. https://doi.org/10.1002/anie.200250856 doi: 10.1002/anie.200250856
    [92] Samad S, Loh KS, Wong WY, et al. (2018) Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int J Hydrogen Energy 43: 7823–7854. https://doi.org/10.1016/j.ijhydene.2018.02.154 doi: 10.1016/j.ijhydene.2018.02.154
    [93] Devrim Y, Arıca ED, Albostan A (2018) Graphene based catalyst supports for high temperature PEM fuel cell application. Int J Hydrogen Energy 43: 11820–11829. https://doi.org/10.1016/j.ijhydene.2018.03.047 doi: 10.1016/j.ijhydene.2018.03.047
    [94] Zhang N, Li L, Chu Y, et al. (2019) High Pt utilization efficiency of electrocatalysts for oxygen reduction reaction in alkaline media. Catal Today 332: 101–108. https://doi.org/10.1016/j.cattod.2018.07.018 doi: 10.1016/j.cattod.2018.07.018
    [95] Mu X, Xu Z, Ma Y, et al. (2017) Graphene-carbon nanofiber hybrid supported Pt nanoparticles with enhanced catalytic performance for methanol oxidation and oxygen reduction. Electrochim Acta 253: 171–177. https://doi.org/10.1016/j.electacta.2017.09.029 doi: 10.1016/j.electacta.2017.09.029
    [96] Wang Y, Li G, Jin J, et al. (2017) Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts. Int J Hydrogen Energy 42: 5938–5947. https://doi.org/10.1016/j.ijhydene.2017.02.012 doi: 10.1016/j.ijhydene.2017.02.012
    [97] Tong X, Zhang J, Zhang G, et al. (2017) Ultrathin carbon-coated Pt/carbon nanotubes: A highly durable electrocatalyst for oxygen reduction. Chem Mater 29: 9579–9587. https://doi.org/10.1021/acs.chemmater.7b04221 doi: 10.1021/acs.chemmater.7b04221
    [98] Wang YJ, Fang B, Li H, et al. (2016) Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog Mater Sci 82: 445–498. https://doi.org/10.1016/j.pmatsci.2016.06.002 doi: 10.1016/j.pmatsci.2016.06.002
    [99] Sui S, Wang X, Zhou X, et al. (2017) A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 5: 1808–1825. https://doi.org/10.1039/C6TA08580F doi: 10.1039/C6TA08580F
    [100] Fan L, Zhao J, Luo X, et al. (2022) Comparison of the performance and degradation mechanism of PEMFC with Pt/C and Pt black catalyst. Int J Hydrogen Energy 47: 5418–5428. https://doi.org/10.1016/j.ijhydene.2021.11.135 doi: 10.1016/j.ijhydene.2021.11.135
    [101] Li Y, Li J, Wang YG, et al. (2021) Carbon corrosion mechanism on nitrogen-doped carbon support—A density functional theory study. Int J Hydrogen Energy 46: 13273–13282. https://doi.org/10.1016/j.ijhydene.2021.01.148 doi: 10.1016/j.ijhydene.2021.01.148
    [102] Borup RL, Kusoglu A, Neyerlin KC, et al. (2020) Recent developments in catalyst-related PEM fuel cell durability. Curr Opin Electroche 21: 192–200. https://doi.org/10.1016/j.coelec.2020.02.007 doi: 10.1016/j.coelec.2020.02.007
    [103] Hu Z, Xu L, Gan Q, et al. (2021) Carbon corrosion induced fuel cell accelerated degradation warning: From mechanism to diagnosis. Electrochim Acta 389: 138627. https://doi.org/10.1016/j.electacta.2021.138627 doi: 10.1016/j.electacta.2021.138627
    [104] Sabawa J, Bandarenka A (2021) Investigation of degradation mechanisms in PEM fuel cells caused by low-temperature cycles. Int J Hydrogen Energy 46: 15951–15964. https://doi.org/10.1016/j.ijhydene.2021.02.088 doi: 10.1016/j.ijhydene.2021.02.088
    [105] Zheng Z, Yang F, Lin C, et al. (2020) Design of gradient cathode catalyst layer (CCL) structure for mitigating Pt degradation in proton exchange membrane fuel cells (PEMFCs) using mathematical method. J Power Sources 451: 227729. https://doi.org/10.1016/j.jpowsour.2020.227729 doi: 10.1016/j.jpowsour.2020.227729
    [106] Sun X, Yu H, Zhou L, et al. (2020) Influence of platinum dispersity on oxygen transport resistance and performance in PEMFC. Electrochim Acta 332: 135474. https://doi.org/10.1016/j.electacta.2019.135474 doi: 10.1016/j.electacta.2019.135474
    [107] Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B-Environ 88: 1–24. https://doi.org/10.1016/j.apcatb.2008.09.030 doi: 10.1016/j.apcatb.2008.09.030
    [108] Chen G, Dodson B, Hedges DM, et al. (2018) Fabrication of high aspect ratio millimeter-tall free-standing carbon nanotube-based microelectrode arrays. ACS Biomater Sci Eng 4: 1900–1907. https://doi.org/10.1021/acsbiomaterials.8b00038 doi: 10.1021/acsbiomaterials.8b00038
    [109] Tian Z, Jiang S, Liang Y, et al. (2006) Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 110: 5343–5350. https://doi.org/10.1021/jp056401o doi: 10.1021/jp056401o
    [110] Hsieh C, Chou Y, Lin J (2007) Fabrication and electrochemical activity of Ni-attached carbon nanotube electrodes for hydrogen storage in alkali electrolyte. Int J Hydrogen Energy 32: 3457–3464. https://doi.org/10.1016/j.ijhydene.2007.02.021 doi: 10.1016/j.ijhydene.2007.02.021
    [111] Tang Z, Poh C, Lee K, et al. (2010) Enhanced catalytic properties from platinum nanodots covered carbon nanotubes for proton-exchange membrane fuel cells. J Power Sources 195: 155–159. https://doi.org/10.1016/j.jpowsour.2009.06.105 doi: 10.1016/j.jpowsour.2009.06.105
    [112] Jha N, Ramesh P, Bekyarova E, et al. (2013) Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci Rep 3: 2257. https://dio.org/10.1038/srep02257 doi: 10.1038/srep02257
    [113] Lin J, Adame A, Kannan A (2010) Development of durable platinum nanocatalyst on carbon nanotubes for proton exchange membrane fuel cells. J Electrochem Soc 157: B846. https://dio.org/10.1149/1.3367753 doi: 10.1149/1.3367753
    [114] Tian Z, Lim S, Poh C, et al. (2011) A highly order‐structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra‐low Pt loading PEM fuel cells. Adv Energy Mater 1: 1205–1214. https://doi.org/10.1002/aenm.201100371 doi: 10.1002/aenm.201100371
    [115] Zhang W, Minett A, Gao M, et al. (2011) Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells. Adv Energy Mater 1: 671–677. https://doi.org/10.1002/aenm.201100092 doi: 10.1002/aenm.201100092
    [116] Guo D, Li H (2004) High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. J Electroanal Chem 573: 197–202. https://doi.org/10.1016/j.jelechem.2004.07.006 doi: 10.1016/j.jelechem.2004.07.006
    [117] Shen A, Zou Y, Wang Q, et al. (2014) Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew Chem Int Ed 53: 10804–10808. https://doi.org/10.1002/ange.201406695 doi: 10.1002/ange.201406695
    [118] Wang X, Wang J, Wang D, et al. (2014) One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem Commun 50: 4839–4842. httpps://doi.org/10.1039/C4CC00440J doi: 10.1039/C4CC00440J
    [119] Li T, Luo G, Liu K, et al. (2018) Encapsulation of Ni3Fe nanoparticles in N‐doped carbon nanotube–grafted carbon nanofibers as high‐efficiency hydrogen evolution electrocatalysts. Adv Funct Mater 28: 1805828. https://doi.org/10.1002/adfm.201805828 doi: 10.1002/adfm.201805828
    [120] Sawant S, Patwardhan A, Joshi J, et al. (2022) Boron doped carbon nanotubes: Synthesis, characterization and emerging applications–A review. Chem Eng J 427: 131616. https://doi.org/10.1016/j.cej.2021.131616 doi: 10.1016/j.cej.2021.131616
    [121] Jarrais B, Guedes A, Freire C (2018) Heteroatom-doped carbon nanomaterials as metal-free catalysts for the reduction of 4-nitrophenol. ChemistrySelect 3: 1737–1748. https://doi.org/10.1002/slct.201702706 doi: 10.1002/slct.201702706
    [122] Akula S, Parthiban V, Peera S, et al. (2017) Simultaneous Co-doping of nitrogen and fluorine into MWCNTs: An in-situ conversion to graphene like sheets and its electro-catalytic activity toward oxygen reduction reaction. J Electrochem Soc 164: F568. https://doi.org/10.1149/2.0501706jes doi: 10.1149/2.0501706jes
    [123] Peera S, Menon R, Das S, et al. (2024) Oxygen reduction electrochemistry at F doped carbons: A review on the effect of highly polarized CF bonding in catalysis and stability of fuel cell catalysts. Coordin Chem Rev 500: 215491. https://doi.org/10.1016/j.ccr.2023.215491 doi: 10.1016/j.ccr.2023.215491
    [124] Star AG, Fuller TF (2017) FIB-SEM tomography connects microstructure to corrosion-induced performance loss in PEMFC cathodes. J Electrochem Soc 164: F901. https://doi.org/10.1149/2.0321709jes doi: 10.1149/2.0321709jes
    [125] Park JH, Hwang SM, Park GG, et al. (2018) Variations in performance-degradation behavior of Pt/CNF and Pt/C MEAs for the same degree of carbon corrosion. Electrochim Acta 260: 674–683. https://doi.org/10.1016/j.electacta.2017.12.015 doi: 10.1016/j.electacta.2017.12.015
    [126] Kanninen P, Eriksson B, Davodi F, et al. (2020) Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes. Electrochim Acta 332: 135384. https://doi.org/10.1016/j.electacta.2019.135384 doi: 10.1016/j.electacta.2019.135384
    [127] Yu Y, Li H, Wang H, et al. (2012) A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences, and mitigation strategies. J Power Sources 205: 10–23. https://doi.org/10.1016/j.jpowsour.2012.01.059 doi: 10.1016/j.jpowsour.2012.01.059
    [128] Earp B, Dunn D, Phillips J, et al. (2020) Enhancement of electrical conductivity of carbon nanotube sheets through copper addition using reduction expansion synthesis. Mater Res Bull 131: 110969. https://doi.org/10.1016/j.materresbull.2020.110969 doi: 10.1016/j.materresbull.2020.110969
    [129] Karthikeyan N, Vinayan B, Rajesh M, et al. (2015) Highly durable platinum based cathode electrocatalysts for PEMFC application using oxygen and nitrogen functional groups attached nanocarbon supports. Fuel Cells 15: 278–287. https://doi.org/10.1002/fuce.201400134 doi: 10.1002/fuce.201400134
    [130] Zhao X, Hayashi A, Noda Z, et al. (2013) Evaluation of change in nanostructure through the heat treatment of carbon materials and their durability for the start/stop operation of polymer electrolyte fuel cells. Electrochim Acta 97: 33–41. https://doi.org/10.1016/j.electacta.2013.02.062 doi: 10.1016/j.electacta.2013.02.062
    [131] Wang M, Xu F, Sun H, et al. (2011) Nanoscale graphite-supported Pt catalysts for oxygen reduction reactions in fuel cells. Electrochim Acta 56: 2566–2573. https://doi.org/10.1016/j.electacta.2010.11.019 doi: 10.1016/j.electacta.2010.11.019
    [132] Wang X, Li W, Chen Z, et al. (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158: 154–159. https://doi.org/10.1016/j.jpowsour.2005.09.039 doi: 10.1016/j.jpowsour.2005.09.039
    [133] Gao W, Wen D, Ho J, et al. (2019) Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress. Mater Today Chem 12: 266–281. https://doi.org/10.1016/j.mtchem.2019.02.002 doi: 10.1016/j.mtchem.2019.02.002
    [134] Arumugam B, Kakade B, Tamaki T, et al. (2014) Enhanced activity and durability for the electroreduction of oxygen at a chemically ordered intermetallic PtFeCo catalyst. RSC Adv 4: 27510–27517. https://doi.org/10.1039/C4RA04744C doi: 10.1039/C4RA04744C
    [135] Peera SG, Lee TG, Sahu AK (2019) Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactions: An overview. Sustain Energ Fuels 3: 1866–1891. https://doi.org/10.1039/C9SE00082H doi: 10.1039/C9SE00082H
    [136] Borghei M, Scotti G, Kanninen P, et al. (2014) Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy 65: 612–620. https://doi.org/10.1016/j.energy.2013.11.067 doi: 10.1016/j.energy.2013.11.067
    [137] López-Rosas D, Félix-Navarro R, Flores-Hernández J, et al. (2021) Synthesis of Pt-Ni/CNT cathodic catalyst and its application in a PEM fuel cell. J Mex Chem Soc 65: 39–51. https://doi.org/10.29356/jmcs.v65i1.1268 doi: 10.29356/jmcs.v65i1.1268
    [138] Wang H, Kakade BA, Tamaki T, et al. (2014) Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells. J Power Sources 260: 338–348. https://doi.org/10.1016/j.jpowsour.2014.03.014 doi: 10.1016/j.jpowsour.2014.03.014
    [139] Garapati MS, Sundara R (2019) Highly efficient and ORR active platinum-scandium alloy-partially exfoliated carbon nanotubes electrocatalyst for proton exchange membrane fuel cell. Int J Hydrogen Energy 44: 10951–10963. https://doi.org/10.1016/j.ijhydene.2019.02.161 doi: 10.1016/j.ijhydene.2019.02.161
    [140] He Z, Chen J, Liu D, et al. (2004) Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diam Relat Mater 13: 1764–1770. https://doi.org/10.1016/j.diamond.2004.03.004 doi: 10.1016/j.diamond.2004.03.004
    [141] Sharifi T, Nitze F, Barzegar HR, et al. (2012) Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 50: 3535–3541. https://doi.org/10.1016/j.carbon.2012.03.022 doi: 10.1016/j.carbon.2012.03.022
    [142] Mardle P, Ji X, Wu J, et al. (2020) Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Appl Catal B-Environ 260: 118031. https://doi.org/10.1016/j.apcatb.2019.118031 doi: 10.1016/j.apcatb.2019.118031
    [143] Liu Z, Shi Q, Zhang R, et al. (2014) Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells. J Power Sources 268: 171–175. https://doi.org/10.1016/j.jpowsour.2014.06.036 doi: 10.1016/j.jpowsour.2014.06.036
    [144] Hoque M, Hassan F, Jauhar A, et al. (2018) Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance. ACS Sustainable Chem Eng 6: 93–98. https://doi.org/10.1021/acssuschemeng.7b03580 doi: 10.1021/acssuschemeng.7b03580
    [145] Rowshanzamir S, Peighambardoust SJ, Parnian M, et al. (2015) Effect of Pt-Cs2.5H0.5PW12O40 catalyst addition on durability of self-humidifying nanocomposite membranes based on sulfonated poly(ether ether ketone) for proton exchange membrane fuel cell applications. Int J Hydrogen Energy 40: 549–560. https://doi.org/10.1016/j.ijhydene.2014.10.134
    [146] Shi X, Iqbal N, Kunwar S, et al. (2018) PtCo@NCNTs cathode catalyst using ZIF-67 for proton exchange membrane fuel cell. Int J Hydrogen Energy 43: 3520–3526. https://doi.org/10.1016/j.ijhydene.2017.06.084 doi: 10.1016/j.ijhydene.2017.06.084
    [147] Roudbari M, Ojani R, Raoof JB (2020) Nitrogen functionalized carbon nanotubes as a support of platinum electrocatalysts for performance improvement of ORR using fuel cell cathodic half-cell. Renewable Energ 159: 1015–1028. https://doi.org/10.1016/j.renene.2020.06.028 doi: 10.1016/j.renene.2020.06.028
    [148] Ortiz-Herrera J, Cruz-Martínez H, Solorza-Feria O, et al. (2022) Recent progress in carbon nanotubes support materials for Pt-based cathode catalysts in PEM fuel cells. Int J Hydrogen Energy 47: 30213–30224. https://doi.org/10.1016/j.ijhydene.2022.03.218 doi: 10.1016/j.ijhydene.2022.03.218
    [149] Zhao T, Gadipelli S, He G, et al. (2018) Tunable bifunctional activity of MnxCo3-xO4 nanocrystals decorated on carbon nanotubes for oxygen electrocatalysis. ChemSusChem 11: 1295–1304. https://doi.org/10.1002/cssc.201800049 doi: 10.1002/cssc.201800049
    [150] Ge X, Liu Y, Goh FT, et al. (2014) Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl Mater Interfaces 6: 12684–12691. https://doi.org/10.1021/am502675c doi: 10.1021/am502675c
    [151] Xing X, Liu R, Anjass M, et al. (2020) Bimetallic manganese-vanadium functionalized N, S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Appl Catal B-Environ 277: 119195. https://doi.org/10.1016/j.apcatb.2020.119195 doi: 10.1016/j.apcatb.2020.119195
    [152] Li J, Tang D, Hou P, et al. (2018) The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Commun 8: 1158–1166. https://doi.org/10.1557/mrc.2018.174 doi: 10.1557/mrc.2018.174
    [153] Esfahani R, Fruehwald H, Afsahi F, et al. (2018) Enhancing fuel cell catalyst layer stability using a dual-function sulfonated silica-based ionomer. Appl Catal B-Environ 232: 314–321. https://doi.org/10.1016/j.apcatb.2018.03.080 doi: 10.1016/j.apcatb.2018.03.080
    [154] Moghadam Esfahani R, Vankova S, Easton E, et al. (2020) A hybrid Pt/NbO/CNTs catalyst with high activity and durability for oxygen reduction reaction in PEMFC. Renew Energ 154: 913–924. https://doi.org/10.1016/j.renene.2020.03.029 doi: 10.1016/j.renene.2020.03.029
    [155] Liu Q, Li X, Zhang S, et al. (2022) Novel sulfonated N-heterocyclic poly(aryl ether ketone ketone)s with pendant phenyl groups for proton exchange membrane performing enhanced oxidative stability and excellent fuel cell properties. J Membrane Sci 641: 119926. https://doi.org/10.1016/j.memsci.2021.119926 doi: 10.1016/j.memsci.2021.119926
    [156] Pan M, Pan C, Li C, et al. (2021) A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew Sust Energ Rev 141: 110771. https://doi.org/10.1016/j.rser.2021.110771 doi: 10.1016/j.rser.2021.110771
    [157] Sun X, Simonsen SC, Norby T, et al. (2019) Composite membranes for high temperature PEM fuel cells and electrolysers: A critical review. Membranes 9: 83. https://doi.org/10.3390/membranes9070083 doi: 10.3390/membranes9070083
    [158] Chen J, Liu B, Gao X, et al. (2018) A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 8: 28048–28085. https://doi.org/10.1039/C8RA04205E doi: 10.1039/C8RA04205E
    [159] Taufiq M, Shaari N, Kamarudin S (2021) Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview. Int J Energy Res 45: 1309–1346. https://doi.org/10.1002/er.5874 doi: 10.1002/er.5874
    [160] Asgari M, Nikazar M, Molla-Abbasi P, et al. (2013) Nafion®/histidine functionalized carbon nanotube: High-performance fuel cell membranes. Int J Hydrogen Energy 38: 5894–5902. https://doi.org/10.1016/j.ijhydene.2013.03.010 doi: 10.1016/j.ijhydene.2013.03.010
    [161] Steffy N, Parthiban V, Sahu A (2018) Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity. J Membrane Sci 563: 65–74. https://doi.org/10.1016/j.memsci.2018.05.051 doi: 10.1016/j.memsci.2018.05.051
    [162] Kim A, Gabunada J, Yoo D (2019) Amelioration in physicochemical properties and single cell performance of sulfonated poly (ether ether ketone) block copolymer composite membrane using sulfonated carbon nanotubes for intermediate humidity fuel cells. Int J Energy Res 43: 2974–2989. https://doi.org/10.1002/er.4494 doi: 10.1002/er.4494
    [163] Neelakandan S, Kanagaraj P, Sabarathinam R, et al. (2016) Effect of sulfonated graphene oxide on the performance enhancement of acid–base composite membranes for direct methanol fuel cells. RSC Adv 6: 51599–51608. https://doi.org/10.1039/C5RA27655A doi: 10.1039/C5RA27655A
    [164] Ahmed S, Ali M, Cai Y, et al. (2019) Novel sulfonated multi‐walled carbon nanotubes filled chitosan composite membrane for fuel‐cell applications. J Appl Polym Sci 136: 47603. https://doi.org/10.1002/app.47603 doi: 10.1002/app.47603
    [165] Matos B, Santiago E, Fonseca F, et al. (2007) Nafion–titanate nanotube composite membranes for PEMFC operating at high temperature. J Electrochem Soc 154: B1358. https://doi.org/10.1149/1.2790802 doi: 10.1149/1.2790802
    [166] Gentil S, Lalaoui N, Dutta A, et al. (2017) Carbon-nanotube-supported bio-inspired nickel catalyst and its integration in hybrid hydrogen/air fuel cells. Angew Chem Int Ed 129: 1871–1875. https://doi.org/10.1002/ange.201611532 doi: 10.1002/ange.201611532
    [167] Yi P, Zhang D, Qiu D, et al. (2019) Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells. Int J Hydrogen Energy 44: 6813–6843. https://doi.org/10.1016/j.ijhydene.2019.01.176 doi: 10.1016/j.ijhydene.2019.01.176
    [168] Hu Q, Zhang D, Fu H (2015) Effect of flow-field dimensions on the formability of Fe–Ni–Cr alloy as bipolar plate for PEM (proton exchange membrane) fuel cell. Energy 83: 156–163. https://doi.org/10.1016/j.energy.2015.02.010 doi: 10.1016/j.energy.2015.02.010
    [169] Papadias DD, Ahluwalia RK, Thomson JK, et al. (2015) Degradation of SS316L bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance. J Power Sources 273: 1237–1249. https://doi.org/10.1016/j.jpowsour.2014.02.053 doi: 10.1016/j.jpowsour.2014.02.053
    [170] Darıcık F, Topcu A, Aydın K, et al. (2023) Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. Int J Hydrogen Energy 48: 1090–1106. https://doi.org/10.1016/j.ijhydene.2022.09.297 doi: 10.1016/j.ijhydene.2022.09.297
    [171] Ramírez-Herrera C, Tellez-Cruz M, Pérez-González J, et al. (2021) Enhanced mechanical properties and corrosion behavior of polypropylene/multi-walled carbon nanotubes/carbon nanofibers nanocomposites for application in bipolar plates of proton exchange membrane fuel cells. Int J Hydrogen Energy 46: 26110–26125. https://doi.org/10.1016/j.ijhydene.2021.04.125 doi: 10.1016/j.ijhydene.2021.04.125
    [172] Radzuan N, Sulong A, Somalu M, et al. (2019) Fibre orientation effect on polypropylene/milled carbon fiber composites in the presence of carbon nanotubes or graphene as a secondary filler: Application on PEM fuel cell bipolar plate. Int J Hydrogen Energy 44: 30618–30626. https://doi.org/10.1016/j.ijhydene.2019.01.063 doi: 10.1016/j.ijhydene.2019.01.063
    [173] Dhakate S, Sharma S, Chauhan N, et al. (2010) CNTs nanostructuring effect on the properties of graphite composite bipolar plate. Int J Hydrogen Energy 35: 4195–4200. https://doi.org/10.1016/j.ijhydene.2010.02.072 doi: 10.1016/j.ijhydene.2010.02.072
    [174] Witpathomwong S, Okhawilai M, Jubsilp C, et al. (2020) Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFC. Int J Hydrogen Energy 45: 30898–30910. https://doi.org/10.1016/j.ijhydene.2020.08.006 doi: 10.1016/j.ijhydene.2020.08.006
    [175] Bairan A, Selamat MZ, Sahadan SN, et al. (2016) Effect of carbon nanotubes loading in multifiller polymer composite as bipolar plate for PEM fuel cell. Procedia Chem 19: 91–97. https://doi.org/10.1016/j.proche.2016.03.120 doi: 10.1016/j.proche.2016.03.120
    [176] Suherman H, Sulong AB, Sahari J (2013) Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubes/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell. Ceram Int 39: 1277–1284. https://doi.org/10.1016/j.ceramint.2012.07.059 doi: 10.1016/j.ceramint.2012.07.059
    [177] Selamat MZ, Ahmad MS, bin Daud MA, et al. (2013) Effect of carbon nanotubes on properties of graphite/carbon black/polypropylene nanocomposites. Adv Mat Res 795: 29–34. https://doi.org/10.4028/www.scientific.net/AMR.795.29 doi: 10.4028/www.scientific.net/AMR.795.29
    [178] Hu B, Chang FL, Xiang LY, et al. (2021) High performance polyvinylidene fluoride/graphite/multi-walled carbon nanotubes composite bipolar plate for PEMFC with segregated conductive networks. Int J Hydrogen Energy 46: 25666–25676. https://doi.org/10.1016/j.ijhydene.2021.05.081 doi: 10.1016/j.ijhydene.2021.05.081
    [179] de Oliveira M, Ett G, Antunes RA (2013) Corrosion and thermal stability of multi-walled carbon nanotube–graphite–acrylonitrile–butadiene–styrene composite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 221: 345–355. https://doi.org/10.1016/j.jpowsour.2012.08.052 doi: 10.1016/j.jpowsour.2012.08.052
    [180] Show Y, Takahashi K (2009) Stainless steel bipolar plate coated with carbon nanotube (CNT)/polytetrafluoroethylene (PTFE) composite film for proton exchange membrane fuel cell (PEMFC). J Power Sources 190: 322–325. https://doi.org/10.1016/j.jpowsour.2009.01.027 doi: 10.1016/j.jpowsour.2009.01.027
    [181] Deyab M (2014) Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell. J Power Sources 268: 50–55. https://doi.org/10.1016/j.jpowsour.2014.06.021 doi: 10.1016/j.jpowsour.2014.06.021
    [182] Younas T (2022) Bipolar plates for the permeable exchange membrane: carbon nanotubes as an alternative, In: Kaur G, PEM Fuel Cells, Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-823708-3.00004-3
    [183] Yao K, Adams D, Hao A, et al. (2017) Highly conductive and strong graphite-phenolic resin composite for bipolar plate applications. Energy Fuels 31: 14320–14331. https://doi.org/10.1021/acs.energyfuels.7b02678 doi: 10.1021/acs.energyfuels.7b02678
    [184] Kwon O, Kim J, Choi H, et al. (2022) CNT sheet as a cathodic functional interlayer in polymer electrolyte membrane fuel cells. Energy 245: 123237. https://doi.org/10.1016/j.energy.2022.123237 doi: 10.1016/j.energy.2022.123237
    [185] Makharia R, Mathias MF, Baker DR (2005) Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. J Electrochem Soc 152: A970. https://doi.org/10.1149/1.1888367 doi: 10.1149/1.1888367
    [186] Kim J, Kim H, Song H, et al. (2021) Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells. Energy 227: 120459. https://doi.org/10.1016/j.energy.2021.120459 doi: 10.1016/j.energy.2021.120459
    [187] Holzapfel P, Bühler M, Escalera‐López D, et al. (2020) Fabrication of a robust PEM water electrolyzer based on non‐noble metal cathode catalyst: [Mo3S13]2- clusters anchored to N‐doped carbon nanotubes. Small 16: 2003161. https://doi.org/10.1002/smll.202003161
    [188] Sonawane J, Yadav A, Ghosh P, et al. (2017) Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens Bioelectron 90: 558–576. https://doi.org/10.1016/j.bios.2016.10.014 doi: 10.1016/j.bios.2016.10.014
    [189] Rikame SS, Mungray AA, Mungray AK (2018) Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal. Electrochim Acta 275: 8–17. https://doi.org/10.1016/j.electacta.2018.04.141 doi: 10.1016/j.electacta.2018.04.141
    [190] Wang Y, Cheng X, Liu K, et al. (2022) 3D hierarchical Co8FeS8-FeCO2O4/N-CNTs@CF with an enhanced microorganisms–anode interface for improving microbial fuel cell performance. ACS Appl Mater Interfaces 14: 35809–35821. https://doi.org/10.1021/acsami.2c09622 doi: 10.1021/acsami.2c09622
    [191] Zhao N, Ma Z, Song H, et al. (2019) Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell. Electrochim Acta 296: 69–74. https://doi.org/10.1016/j.electacta.2018.11.039 doi: 10.1016/j.electacta.2018.11.039
    [192] Wu X, Qiao Y, Guo C, et al. (2020) Nitrogen doping to atomically match reaction sites in microbial fuel cells. Commun Chem 3: 68. https://doi.org/10.1038/s42004-020-0316-z doi: 10.1038/s42004-020-0316-z
    [193] Iftimie S, Dumitru A (2019) Enhancing the performance of microbial fuel cells (MFCs) with nitrophenyl modified carbon nanotubes-based anodes. Appl Surf Sci 492: 661–668. https://doi.org/10.1016/j.apsusc.2019.06.241 doi: 10.1016/j.apsusc.2019.06.241
    [194] Ren H, Pyo S, Lee JI, et al. (2015) A high power density miniaturized microbial fuel cell having carbon nanotube anodes. J Power Sources 273: 823–830. https://doi.org/10.1016/j.jpowsour.2014.09.165 doi: 10.1016/j.jpowsour.2014.09.165
    [195] Dumitru A, Vulpe S, Radu A, et al. (2018) Influence of nitrogen environment on the performance of conducting polymers/CNTs nanocomposites modified anodes for microbial fuel cells (MFCs). Rom J Phys 63: 605–625. Available from: https://rjp.nipne.ro/2018_63_3-4/RomJPhys.63.605.pdf.
    [196] Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: A novel anode material for microbial fuel cells. Electrochim Acta 130: 512–518. https://doi.org/10.1016/j.electacta.2014.03.011 doi: 10.1016/j.electacta.2014.03.011
    [197] Fu Y, Yu J, Zhang Y, et al. (2014) Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells. Appl Surf Sci 317: 84–89. https://doi.org/10.1016/j.apsusc.2014.08.044 doi: 10.1016/j.apsusc.2014.08.044
    [198] Wen Z, Ci S, Mao S, et al. (2013) TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J Power Sources 234: 100–106. https://doi.org/10.1016/j.jpowsour.2013.01.146 doi: 10.1016/j.jpowsour.2013.01.146
    [199] Schulze M, Gülzow E (2004) Degradation of nickel anodes in alkaline fuel cells. J Power Sources 127: 252–263. https://doi.org/10.1016/j.jpowsour.2003.09.021 doi: 10.1016/j.jpowsour.2003.09.021
    [200] Liu Y, Shao Z, Mori T (2021) Development of nickel based cermet anode materials in solid oxide fuel cells—Now and future. Mater Rep Energy 1: 100003. https://doi.org/10.1016/j.matre.2020.11.002 doi: 10.1016/j.matre.2020.11.002
    [201] Mink J, Rojas J, Logan B, et al. (2012) Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell. Nano Lett 12: 791–795. https://doi.org/10.1021/nl203801h
    [202] Zhang H, Wang Y, Wu Z, et al. (2017) A direct urea microfluidic fuel cell with flow-through Ni-supported-carbon-nanotube-coated sponge as porous electrode. J Power Sources 363: 61–69. https://doi.org/10.1016/j.jpowsour.2017.07.055 doi: 10.1016/j.jpowsour.2017.07.055
    [203] Tesfaye R, Das G, Park B, et al. (2019) Ni-Co bimetal decorated carbon nanotube aerogel as an efficient anode catalyst in urea fuel cells. Sci Rep 9: 479. https://doi.org/10.1038/s41598-018-37011-w doi: 10.1038/s41598-018-37011-w
    [204] Gonzalez-Reyna M, Luna-Martínez M, Perez-Robles J (2020) Nickel supported on carbon nanotubes and carbon nanospheres for ammonia oxidation reaction. Nanotechnology 31: 235706. https://doi.org/10.1088/1361-6528/ab73b6 doi: 10.1088/1361-6528/ab73b6
    [205] Abrari S, Daneshvari-Esfahlan V, Hosseini M, et al. (2022) Multi-walled carbon nanotube-supported Ni@Pd core–shell electrocatalyst for direct formate fuel cells. J Appl Electrochem 52: 755–764. https://doi.org/10.1007/s10800-022-01668-z doi: 10.1007/s10800-022-01668-z
    [206] Nourbakhsh F, Mohsennia M, Pazouki M (2017) Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell. Bioproc Biosyst Eng 40: 1669–1677. https://doi.org/10.1007/s00449-017-1822-y doi: 10.1007/s00449-017-1822-y
    [207] Nazal M, Olakunle O, Al-Ahmed A, et al. (2018) Precious metal free Ni/Cu/Mo trimetallic nanocomposite supported on multi-walled carbon nanotubes as highly efficient and durable anode-catalyst for alkaline direct methanol fuel cells. J Electroanal Chem 823: 98–105. https://doi.org/10.1016/j.jelechem.2018.05.035 doi: 10.1016/j.jelechem.2018.05.035
    [208] Liu Y, Zhou G, Sun Y, et al. (2023) Hollow cobalt ferrite nanofibers integrating with carbon nanotubes as microbial fuel cell anode for boosting extracellular electron transfer. Appl Surf Sci 609: 155386. https://doi.org/10.1016/j.apsusc.2022.155386 doi: 10.1016/j.apsusc.2022.155386
    [209] Fraiwan A, Adusumilli S, Han D, et al. (2014) Microbial power‐generating capabilities on micro-/nano-structured anodes in micro‐sized microbial fuel cells. Fuel Cells 14: 801–809. https://doi.org/10.1002/fuce.201400041 doi: 10.1002/fuce.201400041
    [210] Cui H, Du L, Guo P, et al. (2015) Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources 283: 46–53. https://doi.org/10.1016/j.jpowsour.2015.02.088 doi: 10.1016/j.jpowsour.2015.02.088
    [211] Wang YQ, Huang HX, Li B, et al. (2015) Novelly developed three-dimensional carbon scaffold anodes from polyacrylonitrile for microbial fuel cells. J Mater Chem A 3: 5110–5118. https://doi.org/10.1039/C4TA06007E doi: 10.1039/C4TA06007E
    [212] Li J, Qian J, Chen X, et al. (2022) Three-dimensional hierarchical graphitic carbon encapsulated CoNi alloy/N-doped CNTs/carbon nanofibers as an efficient multifunctional electrocatalyst for high-performance microbial fuel cells. Composites Part B 231: 109573. https://doi.org/10.1016/j.compositesb.2021.109573 doi: 10.1016/j.compositesb.2021.109573
    [213] Yadav MD, Joshi HM, Sawant SV, et al. (2023) Advances in the application of carbon nanotubes as catalyst support for hydrogenation reactions. Chem Eng Sci 272: 118586. https://doi.org/10.1016/j.ces.2023.118586 doi: 10.1016/j.ces.2023.118586
    [214] Maturost S, Themsirimongkon S, Waenkaew P, et al. (2021) The effect of CuO on a Pt-based catalyst for oxidation in a low-temperature fuel cell. Int J Hydrogen Energy 46: 5999–6013. https://doi.org/10.1016/j.ijhydene.2020.08.154 doi: 10.1016/j.ijhydene.2020.08.154
    [215] Shroti N, Daletou MK (2022) The Pt–Co alloying effect on the performance and stability of high temperature PEMFC cathodes. Int J Hydrogen Energy 47: 16235–16248. https://doi.org/10.1016/j.ijhydene.2022.03.109 doi: 10.1016/j.ijhydene.2022.03.109
    [216] Takenaka S, Goto M, Masuda Y, et al. (2018) Improvement in the durability of carbon black-supported Pt cathode catalysts by silica-coating for use in PEFCs. Int J Hydrogen Energy 43: 7473–7482. https://doi.org/10.1016/j.ijhydene.2018.02.159 doi: 10.1016/j.ijhydene.2018.02.159
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(642) PDF downloads(94) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog