Citation: Stephanie Flores Zopf, Matthew J. Panzer. Integration of UV-cured Ionogel Electrolyte with Carbon Paper Electrodes[J]. AIMS Materials Science, 2014, 1(1): 59-69. doi: 10.3934/matersci.2014.1.59
[1] | Kaempgen M, Chan CK, Ma J, et al. (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9: 1872-1876. doi: 10.1021/nl8038579 |
[2] | Le Bideau J, Viau L, Vioux A. (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40: 907-925. doi: 10.1039/C0CS00059K |
[3] | Sung J-H, Kim S-J, Lee K-H. (2004) Fabrication of all-solid-state electrochemical microcapacitors. J Power Sources 133: 312-319. doi: 10.1016/j.jpowsour.2004.02.003 |
[4] | Sung J-H, Kim S-J, Jeong S-H, et al. (2006) Flexible micro-supercapacitors. J Power Sources162: 1467-1470. |
[5] | Stępniak I, Andrzejewska E. (2009) Highly conductive ionic liquid based ternary polymer electrolytes obtained by in situ photopolymerisation. Electrochim Acta 54: 5660-5665. doi: 10.1016/j.electacta.2009.05.004 |
[6] | Visentin AF, Panzer MJ. (2012) Poly(ethylene glycol) diacrylate-supported ionogels with consistent capacitive behavior and tunable elastic response. ACS Appl Mater Interfaces 4:2836-2839. doi: 10.1021/am300372n |
[7] | Yang C-M, Ju JB, Lee JK, et al. (2005) Electrochemical performances of electric double layer capacitor with UV-cured gel polymer electrolyte based on poly[(ethylene glycol)diacrylate]-poly(vinylidene fluoride) blend. Electrochim Acta 50: 1813-1819. doi: 10.1016/j.electacta.2004.08.033 |
[8] | Meng C, Liu C, Chen L, et al. (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10: 4025-4031. doi: 10.1021/nl1019672 |
[9] | Choi BG, Hong J, Hong WH, et al. (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5: 7205-7213. doi: 10.1021/nn202020w |
[10] | Hu S, Rajamani R, Yu X. (2012) Flexible solid-state paper based carbon nanotube supercapacitor. Appl Phys Lett 100: 104103. doi: 10.1063/1.3691948 |
[11] | Kang YJ, Chung H, Han C-H, et al. (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 23:065401. doi: 10.1088/0957-4484/23/6/065401 |
[12] | Jung HY, Karimi MB, Hahm MG, et al. (2012) Transparent, flexible supercapacitors from nano-engineered carbon films. Sci Rep 2: 773. |
[13] | Pech D, Brunet M, Durou H, et al. (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotech 5: 651-654. doi: 10.1038/nnano.2010.162 |
[14] | El-Kady MF, Kaner RB. (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Commun 4: 1475. doi: 10.1038/ncomms2446 |
[15] | Zhai Y, Dou Y, Zhao D, et al. (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23: 4828-4850. doi: 10.1002/adma.201100984 |
[16] | Liu C, Yu Z, Neff D, et al. (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10: 4863-4868. doi: 10.1021/nl102661q |
[17] | Gallego AKC, Rincon ME. (2006) Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells. J Power Sources 162:743-747. doi: 10.1016/j.jpowsour.2006.06.085 |
[18] | Yang X, Zhu J, Qiu L, et al. (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23:2833-2838. doi: 10.1002/adma.201100261 |
[19] | Hulicova-Jurcakova D, Seredych M, Lu GQ, et al. (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19: 438-447. doi: 10.1002/adfm.200801236 |
[20] | Gou J, Tang Y, Liang F, et al. (2010) Carbon nanofiber paper for lightning strike protection of composite materials. Composites: Part B 41: 192-198. |