Citation: Min Lai, Xiaofang Yang, Qing Liu, Jinghua Li, Yanhua Hou, Xiuyong Chen, Kaiyong Cai. The surface nanostructures of titanium alloy regulate the proliferation of endothelial cells[J]. AIMS Materials Science, 2014, 1(1): 45-58. doi: 10.3934/matersci.2014.1.45
[1] | Rabin I, Shani M, Mursi J, et al. (2013) Effect of timing of thrombectomy on survival of thrombosed arteriovenous hemodialysis grafts. Vasc Endovascular Surg 47: 342-345. doi: 10.1177/1538574413487442 |
[2] | Sista S, Wen C, Hodgson PD, et al. (2011) The influence of surface energy of titanium-zirconium alloy on osteoblast cell functions in vitro. J Biomed Mater Res Part A. 97A:27-36. doi: 10.1002/jbm.a.33013 |
[3] | Blit PH, McClung WG, Brash JL, et al. (2011) Platelet inhibition and endothelial cell adhesion on elastin-like polypeptide surface modified materials. Biomaterials 32: 5790-5800. doi: 10.1016/j.biomaterials.2011.04.067 |
[4] | Ranella A, Barberoglou M, Bakogianni S, et al. (2010) Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6: 2711-2720. doi: 10.1016/j.actbio.2010.01.016 |
[5] | Seo CH, Furukawa K, Montagne K, et al. (2011) The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials 32: 9568-9575. doi: 10.1016/j.biomaterials.2011.08.077 |
[6] | Bettinger CJ, Langer R, Borenstein JT. (2009) Engineering substrate topography at the microand nanoscale to control cell function. Angew Chem Int Ed 48: 5406-5415. doi: 10.1002/anie.200805179 |
[7] | Miller DC, Thapa A, Haberstroh KM, et al. (2004) Endothelial and vascular smooth muscle cell function on poly (lactic-co-glycolic acid) with nano-structured surfaces. Biomaterials 25: 53-61. doi: 10.1016/S0142-9612(03)00471-X |
[8] | Miller DC, Haberstroh KM, Webster TJ. (2007) PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J Biomed Mater Res Part A 81A:678-684. doi: 10.1002/jbm.a.31093 |
[9] | Choudhary S, Haberstroh KM, Webster TJ. (2007) Enhanced functions of vascular cells on nanostructured Ti for improved stent applications. Tissue Eng Part A 13: 1421-1430. doi: 10.1089/ten.2006.0376 |
[10] | Liliensiek SJ, Wood JA, Yong J, et al. (2010) Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 31: 5418-5426. doi: 10.1016/j.biomaterials.2010.03.045 |
[11] | Geetha M, Singh AK, Muraleedharan K, et al. (2001) Effect of thermomechanical processing on microstructure of a Ti- 13Nb-13Zr alloy. J Alloys Compd 329: 264-271. doi: 10.1016/S0925-8388(01)01604-8 |
[12] | Kent D, Wang G, Yu Z, et al. (2010) Pseudoelastic behaviour of a [beta] Ti-25Nb-3Zr-3Mo-2Sn alloy. Mater Sci Eng: A 527: 2246-2252. doi: 10.1016/j.msea.2009.11.059 |
[13] | Yu ZT, Zhou L. (2006) Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM. Mater Sci Eng: A 438-440: 391-394. |
[14] | Tong WP, Tao NR, Wang ZB, et al. (2003) Nitriding iron at lower temperatures. Science 299:686-688. doi: 10.1126/science.1080216 |
[15] | Zhu KY, Vasse A, Brisset F, et al. (2004) Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater 52: 4101-4110. doi: 10.1016/j.actamat.2004.05.023 |
[16] | Tao NR, Tong WP, Wang ZB, et al. (2003) Mechanical and wear properties of nanostructured surface layer in iron induced by surface mechanical attrition Treatment. J Mater Sci Tech 19:563-566. |
[17] | Wen M, Wen C, Hodgson P, et al. (2011) Wear behavior of pure Ti with a nanocrystalline surface layer. Appl Mech Mater 66-68: 1500-1504. |
[18] | Wang ZB, Tao NR, Li S, et al. (2003) Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater Sci Eng A 352: 144-149. doi: 10.1016/S0921-5093(02)00870-5 |
[19] | Zhao C, Han P, Ji W, et al. (2012) Enhanced mechanical properties and in vitro cell response of surface mechanical attrition treated pure titanium. J Biomater Appl 27:113-118. doi: 10.1177/0885328210393047 |
[20] | Zhao CL, Cao P, Ji WP, et al. (2011) Hierarchical titanium surface textures affect osteoblastic functions. J Biomed Mater Res Part A 99: 666-675. |
[21] | Lai M, Cai KY, Hu Y, et al. (2012) Regulation of the behaviors of mesenchymal stem cells by surface nanostructured titanium. Colloids Surf B Biointerfaces 97: 211-220. doi: 10.1016/j.colsurfb.2012.04.029 |
[22] | Kent D, Wang G, Yu ZT, et al. (2011) Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique. J Mech Behav Biomed Mater 4:405-416. doi: 10.1016/j.jmbbm.2010.11.013 |
[23] | Paladugua M, Kent D, Wang G, et al. (2010) Strengthening of cast Ti-25Nb-3Mo-3Zr-2Sn alloy through precipitation of α in two discrete crystallographic orientations. Mater Sci Eng: A527: 6601-6606. |
[24] | Zhao C, Han P, Ji W, et al. (2012) Enhanced mechanical properties and in vitro cell response of surface mechanical attrition treated pure titanium. J Biomater Appl 27: 113-118. doi: 10.1177/0885328210393047 |
[25] | Geiger B, Tokuyasu KT, Dutton AH, et al. (1980) Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci USA 77: 4127-4131. doi: 10.1073/pnas.77.7.4127 |
[26] | Dolatshahi-Pirouz A, Jensen T, Kraft DC, et al. (2010) Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS Nano 4: 2874-2882. doi: 10.1021/nn9017872 |
[27] | Webster TJ, Schadler LS, Siegel RW, et al. (2001) Mechanisms of enhanced osteoblast adhesion on nanophase alumina involves vitronectin. Tissue Eng 7: 291-301. doi: 10.1089/10763270152044152 |
[28] | Ignarro LJ, Buga GM, Wood KS, et al. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84: 9265-9269. doi: 10.1073/pnas.84.24.9265 |
[29] | Palmer RMJ, Ferrige AG, Moncada S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524-526. doi: 10.1038/327524a0 |
[30] | Mineo C, Deguchi H, Griffin JH, et al. (2006) Endothelial and antithrombotic actions of HDL. Circ Res 98: 1352-1364. doi: 10.1161/01.RES.0000225982.01988.93 |
[31] | Tang JR, Seedorf G, Balasubramaniam V, et al. (2007) Early inhaled nitric oxide treatment decreases apoptosis of endothelial cells in neonatal rat lungs after vascular endothelial growth factor inhibition. Am J Physiol Lung Cell Mol Physiol 293: 1271-1280. doi: 10.1152/ajplung.00224.2007 |
[32] | Cooney R, Hynes SO, Sharif F, et al. (2007) Gene-eluting stents: adenovirus-mediated delivery of eNOS to the blood. Gene Ther 14:396-404. doi: 10.1038/sj.gt.3302882 |
[33] | Zheng ZZ, Liu ZX. (2007) Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates CD151-induced endothelial cell proliferation and cell migration. Int J Biochem Cell Biol 39: 340-348. doi: 10.1016/j.biocel.2006.09.001 |
[34] | Lu J, Rao MP, MacDonald NC, et al. (2008) Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater 4: 192-201. doi: 10.1016/j.actbio.2007.07.008 |