Processing math: 100%
Communication

Unprecedented occurrence of snow disasters over the Qinghai-Tibetan Plateau since 1980

  • Received: 15 July 2021 Accepted: 13 October 2021 Published: 21 October 2021
  • Continuous snowfall caused natural disasters, called snow disasters here, frequently occur on the Qinghai-Tibetan Plateau of China in recent decades, and cause a large number of losses of animal husbandry and human property. However, their long-term changes are poorly known. Here we use historical records to place recent variations of snow disasters under the background of the past 200 years. There are 366 snow disasters events for the 1820–2009 period, of which 230 happen during 1980–2009. In particular, the count of each decadal events since 1980 is larger than any other time during the past two centuries.

    Citation: Qi Liu, Le He, Jing Zeng, Yetang Wang. Unprecedented occurrence of snow disasters over the Qinghai-Tibetan Plateau since 1980[J]. AIMS Geosciences, 2021, 7(4): 574-581. doi: 10.3934/geosci.2021033

    Related Papers:

    [1] Wenya Shi, Xinpeng Yan, Zhan Huan . Faster free pseudoinverse greedy block Kaczmarz method for image recovery. Electronic Research Archive, 2024, 32(6): 3973-3988. doi: 10.3934/era.2024178
    [2] Ranran Li, Hao Liu . On global randomized block Kaczmarz method for image reconstruction. Electronic Research Archive, 2022, 30(4): 1442-1453. doi: 10.3934/era.2022075
    [3] Yimou Liao, Tianxiu Lu, Feng Yin . A two-step randomized Gauss-Seidel method for solving large-scale linear least squares problems. Electronic Research Archive, 2022, 30(2): 755-779. doi: 10.3934/era.2022040
    [4] Yun Ni, Jinqing Zhan, Min Liu . Topological design of continuum structures with global stress constraints considering self-weight loads. Electronic Research Archive, 2023, 31(8): 4708-4728. doi: 10.3934/era.2023241
    [5] Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang . Exponential projective synchronization analysis for quaternion-valued memristor-based neural networks with time delays. Electronic Research Archive, 2023, 31(9): 5609-5631. doi: 10.3934/era.2023285
    [6] Yanlong Zhang, Rui Zhang, Li Wang . Oblique impact dynamic analysis of wedge friction damper with Dankowicz dynamic friction. Electronic Research Archive, 2024, 32(2): 962-978. doi: 10.3934/era.2024047
    [7] Dongmei Yu, Yifei Yuan, Yiming Zhang . A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of H+-matrices. Electronic Research Archive, 2023, 31(1): 123-146. doi: 10.3934/era.2023007
    [8] Haoqing Wang, Wen Yi, Yannick Liu . Optimal assignment of infrastructure construction workers. Electronic Research Archive, 2022, 30(11): 4178-4190. doi: 10.3934/era.2022211
    [9] Yu Wang . Bi-shifting semantic auto-encoder for zero-shot learning. Electronic Research Archive, 2022, 30(1): 140-167. doi: 10.3934/era.2022008
    [10] Yaguo Guo, Shilin Yang . Projective class rings of the category of Yetter-Drinfeld modules over the 2-rank Taft algebra. Electronic Research Archive, 2023, 31(8): 5006-5024. doi: 10.3934/era.2023256
  • Continuous snowfall caused natural disasters, called snow disasters here, frequently occur on the Qinghai-Tibetan Plateau of China in recent decades, and cause a large number of losses of animal husbandry and human property. However, their long-term changes are poorly known. Here we use historical records to place recent variations of snow disasters under the background of the past 200 years. There are 366 snow disasters events for the 1820–2009 period, of which 230 happen during 1980–2009. In particular, the count of each decadal events since 1980 is larger than any other time during the past two centuries.



    Fractional differential equations (FDEs) appeared as an excellent mathematical tool for, modeling of many physical phenomena appearing in various branches of science and engineering, such as viscoelasticity, statistical mechanics, dynamics of particles, etc. Fractional calculus is a recently developing work in mathematics which studies derivatives and integrals of functions of fractional order [26].

    The most used fractional derivatives are the Riemann-Liouville (RL) and Caputo derivatives. These derivatives contain a non-singular derivatives but still conserves the most important peculiarity of the fractional operators [1,2,10,11,23,24]. Atangana and Baleanu described a derivative with a generalized Mittag-leffler (ML) function. This derivative is often called the Atangana-Baleanu (AB) fractional derivative. The AB-derivative in the senses of Riemman-Liouville and Caputo are denoted by ABR-derivative and ABC-derivative, respectively.

    The AB fractional derivative is a nonlocal fractional derivative with nonsingular kernel which is connected with various applications [3,5,6,8,9,13,14,15,16]. Using the advantage of the non-singular ML kernal present in the AB fractional derivatives, operators, many authors from various branches of applied mathematics have developed and studied mathematical models involving AB fractional derivatives [18,22,29,30,31,32,35,36,37].

    Mohamed et al. [25] considered a system of multi-derivatives for Caputo FDEs with an initial value problem, examined the existence and uniqueness results and obtained numerical results. Sutar et al. [32,33] considered multi-derivative FDEs involving the ABR derivative and examined existence, uniqueness and dependence results. Kucche et al. [12,19,20,21,34] enlarged the work of multi-derivative fractional differential equations involving the Caputo fractional derivative and studied the existence, uniqueness and continuous dependence of the solution.

    Inspired by the preceding work, we perceive the multi-derivative nonlinear neutral fractional integro-differential equation with AB fractional derivative of the Riemann-Liouville sense of the problem:

    dVdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),ȷ0K(ȷ,θ,V(θ))dθ,T0χ(ȷ,θ,V(θ))dθ),ȷI (1.1)
    V(0)=V0R, (1.2)

    where 0Dδȷ denotes the ABR fractional derivative of order δ(0,1), and φC(I×R×R×R,R) is a non-linear function. Let P1V(ȷ)=ȷ0K(ȷ,θ,V(θ))dθ and P2V(ȷ)=T0χ(ȷ,θ,V(θ))dθ. Now, (1.1) becomes,

    dVdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI, (1.3)
    V(0)=V0R. (1.4)

    In this work, we derive a few supplemental results using the characteristics of the fractional integral operator εαδ,η,V;c+. The existence results are obtained by Krasnoselskii's fixed point theorem and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality.

    Definition 2.1. [14] The Sobolev space Hq(X) is defined as Hq(X)={φL2(X):DβφL2(X),|β|q}. Let q[1,) and X be open, XR.

    Definition 2.2. [11,17] The generalized ML function Eαδ,β(u) for complex δ,β,α with Re(δ)>0 is defined by

    Eαδ,β(u)=t=0(α)tα(δt+β)utt!,

    and the Pochhammer symbol is (α)t, where (α)0=1,(α)t=α(α+1)...(α+t1), t=1,2...., and E1δ,β(u)=Eδ,β(u),E1δ,1(u)=Eδ(u).

    Definition 2.3. [4] The ABR fractional derivative of V of order δ is

    0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=B(δ)1δddȷȷ0Eδ[δ1δ(ȷθ)δ]V(θ)dθ,

    where VH1(0,1), δ(0,1), B(δ)>0. Here, Eδ is a one parameter ML function, which shows B(0)=B(1)=1.

    Definition 2.4. [4] The ABC fractional derivative of V of order δ is

    0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ]V(θ)dθ,

    where VH1(0,1), δ(0,1), and B(δ)>0. Here, Eδ is a one parameter ML function, which shows B(0)=B(1)=1.

    Lemma 2.5. [4] If L{g(ȷ);b}=ˉG(b), then L{0Dδȷg(ȷ);b}=B(δ)1δbδˉG(b)bδ+δ1δ.

    Lemma 2.6. [26] L[ȷmδ+β1E(m)δ,β(±aȷδ);b]=m!bδβ(bδ±a)m+1,Em(ȷ)=dmdȷmE(ȷ).

    Definition 2.7. [17,27] The operator εαδ,η,V;c+ on class L(m,n) is

    (εαδ,η,V;c+)[V(ȷ)x(ȷ,y(ȷ))]=t0(ȷθ)α1Eαδ,η[V(ȷθ)δ]Θ(θ)dθ,ȷ[c,d],

    where δ,η,V,αC(Re(δ),Re(η)>0), and n>m.

    Lemma 2.8. [17,27] The operator εαδ,η,V;c+ is bounded on C[m,n], such that (εαδ,η,V;c+)[V(ȷ)x(ȷ,y(ȷ))]PΘ, where

    P=(nm)Re(η)t=0|(α)t||α(δt+η)|[Re(δ)t+Re(η)]|V(nm)Re(δ)|tt!.

    Here, δ,η,V,αC(Re(δ),Re(η)>0), and n>m.

    Lemma 2.9. [17,27] The operator εαδ,η,V;c+ is invertible in the space L(m,n) and φL(m,n) its left inversion is given by

    ([εαδ,η,V;c+]1)[V(ȷ)x(ȷ,y(ȷ))]=(Dη+ςc+εαδ,η,V;c+)[V(ȷ)x(ȷ,y(ȷ))],ȷ(m,n],

    where δ,η,V,αC(Re(δ),Re(η)>0), and n>m.

    Lemma 2.10. [17,27] Let δ,η,V,αC(Re(δ),Re(η)>0),n>m and suppose that the integral equation is

    ȷ0(ȷθ)α1Eαδ,η[V(ȷθ)δ]Θ(θ)dθ=φ(ȷ),ȷ(m,n],

    is solvable in the space L(m,n).Then, its unique solution Θ(ȷ) is given by

    Θ(ȷ)=(Dη+ςc+εαδ,η,V;c+)[V(ȷ)x(ȷ,y(ȷ))],ȷ(m,n].

    Lemma 2.11. [7] (Krasnoselskii's fixed point theorem) Let A be a Banach space and X be bounded, closed, convex subset of A. Let F1,F2 be maps of S into A such that F1V+F2φX V,φU. The equation F1V+F2V=V has a solution on S, and F1, F2 is a contraction and completely continuous.

    Lemma 2.12. [28] (Gronwall-Bellman inequality) Let V and φ be continuous and non-negative functions defined on I. Let V(ȷ)A+ȷaφ(θ)V(θ)dθ,ȷI; here, A is a non-negative constant.

    V(ȷ)Aexp(ȷaφ(θ)dθ),ȷI.

    In this part, we need some fixed-point-techniques-based hypotheses for the results:

    (H1) Let VC[0,T], function φ(C[0,T]×R×R×R,R) is a continuous function, and there exist +ve constants ζ1,ζ2 and ζ. φ(ȷ,V1,V2,V3)φ(ȷ,φ1,φ2,φ3)ζ1(V1φ1+V2φ2+V3φ3) for all V1,V2,V3,φ1,φ2,φ3 in Y, ζ2=maxVRf(ȷ,0,0,0), and ζ=max{ζ1,ζ2}.

    (H2) P1 is a continuous function, and there exist +ve constants C1,C2 and C. P1(ȷ,θ,V1)P1(ȷ,θ,φ1)C1(V1φ1)V1,φ1 in Y, C2=max(ȷ,θ)DP1(ȷ,θ,0), and C=max{C1,C2}.

    (H3) P2 is a continuous function and there are +ve constants D1,D2 and D. P2(ȷ,θ,V1)P2(ȷ,θ,φ1)D1(V1φ1) for all V1,φ1 in Y, D2=max(ȷ,θ)DP2(ȷ,θ,0) and D=max{D1,D2}.

    (H4) Let xc[0,I], function u(c[0,I]×R,R) is a continuous function, and there is a +ve constant k>0, such that u(ȷ,x)u(ȷ,y)kxy. Let Y=C[R,X] be the set of continuous functions on R with values in the Banach space X.

    Lemma 2.13. If (H2) and (H3) are satisfied the following estimates, P1V(ȷ)ȷ(C1V+C2),P1V(ȷ)P1φ(ȷ)CȷVφ, and P2V(ȷ)ȷ(D1V+D2),P2V(ȷ)P2φ(ȷ)DȷVφ.

    Theorem 3.1. The function φC(I×R×R×R,R) and VC(I) is a solution for the problem of Eqs (1.3) and (1.4), iff V is a solution of the fractional equation

    V(ȷ)=V0B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI. (3.1)

    Proof. (1) By using Definition 2.3 and Eq (1.3), we get

    ddȷ(V(ȷ)+B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ)=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)).

    Integrating both sides of the above equation with limits 0 to ȷ, we get

    V(ȷ)+B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθV(0)=ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI.

    Conversely, with differentiation on both sides of Eq (3.1) with respect to ȷ, we get

    dVdȷ+B(δ)1δddȷȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI.

    Using Definition 2.3, we get Eq (1.3) and substitute ȷ=0 in Eq (3.1), we get Eq (1.4).

    Proof. (2) In Equation (1.3), taking the Laplace Transform on both sides, we get

    L[V(ȷ);b]+L[0Dδȷ;b][V(ȷ)x(ȷ,y(ȷ))]=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b].

    Now, using the Laplace Transform formula for the AB fractional derivative of the RL sense, as given in Lemma 2.5, we get

    bˉX(b)[V(ȷ)x(ȷ,y(ȷ))]V(0)+B(δ)1δbδˉX(b)bδ+δ1δ=ˉG(b),

    ˉX(b)=[V(ȷ);b] and ˉG(b)=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b]. Using Eq (1.4), we get

    ˉX(b)=V01bB(δ)1δbδ1ˉX(b)bδ+δ1δ[V(ȷ)x(ȷ,y(ȷ))]+1bˉG(b). (3.2)

    In Eq (3.2) applying the inverse Laplace Transform on both sides using Lemma 2.6 and the convolution theorem, we get

    L1[ˉX(b);ȷ]=V0L1[1b;ȷ]B(δ)1δ(L1[bδ1bδ+δ1δ][V(ȷ)x(ȷ,y(ȷ))]L1[ˉX(b);ȷ])+L1[ˉG(b);ȷ]L1[1b;ȷ]=V0B(δ)1δ(Eδ[δ1δȷδ][V(ȷ)x(ȷ,y(ȷ))])+φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=V0B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ.V(ȷ)=V0B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ. (3.3)

    Theorem 3.2. Let δ(0,1). Define the operator F on C(I):

    (FV)(ȷ)=V0B(δ)1δ(ε1δ,1,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],VC(I). (3.4)

    (A) F is a bounded linear operator on C(I).

    (B) F satisfying the hypotheses.

    (C) F(X) is equicontinuous, and X is a bounded subset of C(I).

    (D) F is invertible, function φC(I), and the operator equation FV=φ has a unique solution in C(I).

    Proof. (A) From Definition 2.7 and Lemma 2.8, the fractional integral operator ε1δ,1,δ1δ;0+ is a bounded linear operator on C(I), such that

    ε1δ,1,δ1δ;0+[V(ȷ)x(ȷ,y(ȷ))]PV,ȷI,where
    P=Tn=0(1)nα(δn+1)(δn+1)|δ1δTδ|nn!=Tn=0(δ1δ)nTδnα(δn+2)=TEδ,2(δ1δTδ),

    and we have

    FV=|B(δ)1δ|ε1δ,1,δ1δ;0+[V(ȷ)x(ȷ,y(ȷ))]PB(δ)1δV,VC(I). (3.5)

    Thus, FV=φ is a bounded linear operator on C(I).

    (B) We consider V,φC(I). By using linear operator F and bounded operator ε1δ,1,δ1δ;0+, for any ȷI,

    |(FV)(ȷ)(Fφ)(ȷ)|=|F(Vφ)[V(ȷ)x(ȷ,y(ȷ))]|B(δ)1δ(ε1δ,1,δ1δ;0+Vφ)[V(ȷ)x(ȷ,y(ȷ))]PB(δ)1δVφ.

    Where, P=TEδ,2(δ1δTδ), then the operator F is satisfied the hypotheses with constant PB(δ)1δ.

    (C) Let U={VC(I):VR} be a bounded and closed subset of C(I), VU, and ȷ1,ȷ2I with ȷ1ȷ2.

    |(FV)(ȷ1)(FV)(ȷ2)|=|B(δ)1δ(ε1δ,1,δ1δ;0+)[V(ȷ1)u(l1,x(l))]B(δ)1δ(ε1δ,1,δ1δ;0+)[V(ȷ2)u(l2,x(l))]|B(δ)1δ|ȷ10{Eδ[δ1δ(ȷ1θ)δ]Eδ[δ1δ(ȷ2θ)δ]}[V(ȷ)x(ȷ,y(ȷ))]dθ|+B(δ)1δ|ȷ2ȷ1Eδ[δ1δ(ȷ2θ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ|B(δ)1δn=0|(δ1δ)n|1α(nδ+1)ȷ10|(ȷ1θ)nδ(ȷ2θ)nδ||[V(ȷ)x(ȷ,y(ȷ))]|dθ+B(δ)1δn=0|(δ1δ)n|1α(nδ+1)ȷ2ȷ1|(ȷ2θ)nδ||[V(ȷ)x(ȷ,y(ȷ))]|dθLB(δ)1δn=0(δ1δ)n1α(nδ+1)ȷ10(ȷ2θ)nδ(ȷ1θ)nδdθ+LB(δ)1δn=0(δ1δ)n1α(nδ+1)ȷ2ȷ1(ȷ2θ)nδdθRB(δ)1δn=0(δ1δ)n1α(nδ+1){(ȷ2ȷ1)nδ+1+ȷnδ+12ȷnδ+11+(ȷ2ȷ1)nδ+1}RB(δ)1δn=0(δ1δ)n1α(nδ+2){ȷnδ+12ȷnδ+11}|(FV)(ȷ1)(FV)(ȷ2)|RB(δ)1δn=0(δ1δ)n1α(nδ+2){ȷnδ+12ȷnδ+11}. (3.6)

    Hence, if |ȷ1ȷ2|0 then |(FV)(ȷ1)(FV)(ȷ2)|0.

    (FV) is equicontinuous on I.

    (D) By Lemmas 2.9 and 2.10, φC(I), and we get

    (ε1δ,1,δ1δ;0+)1[V(ȷ)x(ȷ,y(ȷ))]=(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],ȷ(m,n). (3.7)

    By Eqs (3.4) and (3.5), we have

    (F1)[V(ȷ)x(ȷ,y(ȷ))]=(B(δ)1δε1δ,1,δ1δ;0+)1[V(ȷ)x(ȷ,y(ȷ))]=1δB(δ)(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],ȷ(m,n),

    where βC with Re(β)>0. This shows F is invertible on C(I) and

    (FV)[V(ȷ)x(ȷ,y(ȷ))]=[V(ȷ)x(ȷ,y(ȷ))],ȷI,

    has the unique solution,

    V(ȷ)=(F1[V(ȷ)x(ȷ,y(ȷ))])=1δB(δ)(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ)),y(ȷ))],ȷ(m,n). (3.8)

    Theorem 4.1. Let φC(I×R×R×R,R). Then, the ABR derivative 0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI, is solvable in C(I), and the solution in C(I) is

    V(ȷ)=1δB(δ)(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],ȷI, (4.1)

    where βC,Re(β)>0, and ˆφ(ȷ)=ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI.

    Proof. The corresponding fractional equation of the ABR derivative

    0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI,

    is given by

    B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ=ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI.

    Using operator F of Eq (3.4), we get

    (FV)(s)=ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ=ˆφ(ȷ),ȷI. (4.2)

    Equations (3.7) and (4.2) are solvable, and we get

    V(ȷ)=1δB(δ)(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],ȷI;βC,Re(β)>0. (4.3)

    Theorem 4.2. Let φC(I×R×R×R,R) satisfy (H1)(H3) with L=supȷIω(ȷ), where ω(ȷ)=ζ(1+Cȷ+DT), if L=min{1,12T}. Then problem of (1.3) and (1.4) has a solution in C(I) provided

    2B(δ)TEδ,2(δ1δ)Tδ1δ1. (4.4)

    Proof. Define

    R=V0+NφT1LTB(δ)TEδ,2(δ1δ)Tδ1δ,

    where Nφ=supȷIφ(ȷ,0,0,0). Let U={VC(I):VR}. Consider F1:XA and F2:XA given as

    (F1V)(ȷ)=V0+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI,(F2V)(ȷ)=(F)[V(ȷ)x(ȷ,y(ȷ))],ȷI.

    Let V=F1V+F2V,VC(I) is the fractional Eq (3.1) to the problems (1.3) and (1.4).

    Hence, the operators F1 and F2 satisfy the Krasnoselskii's fixed point theorem.

    Step (ⅰ) F1 is a contraction.

    By (H1)(H3) on φ, V,φC(I) and ȷI,

    |F1V(ȷ)F2φ(ȷ)|ω(ȷ)|V(ȷ)φ(ȷ)|RVφ. (4.5)

    This gives, F1VF2φRTVφ,V,φC(I).

    Step (ⅱ) F2 is completely continuous. By using Theorem 3.3 and Ascoli-Arzela theorem, F2=F is completely continuous.

    Step (ⅲ) F1V+F2φU, for any V,φU, using Theorem 3.3, we obtain

    (F1V+F2φ)(ȷ)(F1V)(ȷ)+(F2φ)(ȷ)V0+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ+ε1δ,1,δ1δ;0+φV0+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ+B(δ)1δTEδ,2(δ1δTδ)φV0+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))φ(θ,0,0,0)dθ+ȷ0φ(θ,0,0,0)dθ+B(δ)1δTEδ,2(δ1δTδ)LV0+ȷ0ζ(V+CȷV+DTV)dθ+Nφȷ0dθ+B(δ)1δTEδ,2(δ1δTδ)LV0+ζ(1+Cȷ+DT)ȷ0Vdθ+Nφȷ0dθ+B(δ)1δTEδ,2(δ1δTδ)LV0+ω(ȷ)Rȷ0dθ+Nφȷ0dθ+B(δ)1δTEδ,2(δ1δTδ)LV0+LRT+NφT+B(δ)1δTEδ,2(δ1δTδ)L. (4.6)

    By definition of R, we get

    V0+NφT=L(1RT+B(δ)TEδ,2(δ1δTδ)1δ). (4.7)

    Using the Eq (4.5) in (4.7), we get condition of Eq (4.4).

    (F1V+F2φ)(ȷ)L(2B(δ)TEδ,2(δ1δ)Tδ1δ),ȷI. (4.8)

    (F1V+F2φ)(ȷ)L,ȷI. This gives, F1V+F2φU, V,φX.

    From Steps (ⅰ)–(ⅲ), all the conditions of Lemma 2.11 follow.

    Theorem 4.3. By Theorem 4.2, the Eqs (1.3) and (1.4) have a unique solution in C(I).

    Proof. (1) The problems (1.3) and (1.4) have an operator equation form as:

    (ε1δ,1,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))]=ˆφ(ȷ),ȷI, (4.9)

    where,

    ˆφ(ȷ)=1δB(δ)(V0V(ȷ)+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ),ȷI.

    By Theorem 4.2, Eq (4.7) is solvable in C(I), by Lemma 2.10 we get a unique solution of Eqs (1.3) and (1.4),

    V(ȷ)=(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],VC(I).

    Proof. (2) Let V,φ be solutions of Eqs (1.3) and (1.4). By fractional integral operators and (H1)(H3), we find, for any ȷI,

    |V(ȷ)φ(ȷ)||B(δ)1δ(ε1δ,1,δ1δ;0+(Vφ))[V(ȷ)x(ȷ,y(ȷ))]|+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ|B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ](V(θ)φ(θ))dθ|+ȷ0ζ(|V(θ)φ(θ)|+C|V(θ)φ(θ)|+D|V(θ)φ(θ)|)dθB(δ)1δȷ0Eδ(|δ1δTδ|)|V(θ)φ(θ)|dθ+ȷ0ζ(1+C+D)|V(θ)φ(θ)|dθB(δ)1δȷ0Eδ(δ1δTδ)|V(θ)φ(θ)|dθ+ȷ0[V(ȷ)x(ȷ,y(ȷ))]|V(θ)φ(θ)|dθȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V(θ)φ(θ)|dθ|V(ȷ)φ(ȷ)|ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V(θ)φ(θ)|dθ. (4.10)

    Theorem 5.1. By Theorem 4.2, if V(ȷ) is a solution of Eqs (1.3) and (1.4), then

    |V(ȷ)|{|V0|+NφT}exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI, (5.1)

    where, Nφ=supȷI|φ(ȷ,0,0,0)|.

    Proof. If V(ȷ) is a solution of Eqs (1.3) and (1.4), for all ȷI,

    |V(ȷ)||V0|B(δ)1δȷ0Eδ(|δ1δ(ȷθ)δ|)|V(θ)|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))|dθ
    |V0|B(δ)1δȷ0Eδ(δ1δ(ȷθ)δ)|V(θ)|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))φ(θ,0,0,0)|dθ+ȷ0|φ(θ,0,0,0)|dθ|V0|B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)|dθ+ȷ0ζ(|V(θ)|+C|V(θ)|+D|V(θ)|)dθ+Nφȷ|V0|B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)|dθ+ȷ0ζ(1+C+D)|V(ȷ)|dθ+NφT|V0|B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)|dθ+ȷ0[V(ȷ)x(ȷ,y(ȷ))]|V(θ)|dθ+NφT{|V0|+NφT}+ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V(θ)|dθ.

    By Lemma 2.12, we get

    |V(ȷ)|{|V0|+NφT}exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI. (5.2)

    We discuss data dependence results for the problem

    dφdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ)),ȷI, (6.1)
    φ(0)=φ0R. (6.2)

    Theorem 6.1. Equation (4.2) holds, and ξk>0, where k=1,2 are real numbers such that,

    |V0φ0|ξ1,|φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ))|ξ2,ȷI. (6.3)

    φ(ȷ) is a solution of ABR fractional derivative Eqs (6.1) and (6.2), and V(ȷ) is a solution of Eqs (1.3) and (1.4).

    Proof. Let V,φ are the solution of Eqs (1.3) and (1.4), (6.1) and (6.2) respectively. We find for any

    |V(ȷ)φ(ȷ)||V0φ0|+B(δ)1δȷ0Eδ(|δ1δ(ȷθ)δ|)|V(θ)φ(θ)|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))˜φ(s,φ(θ),P1φ(θ),P2φ(θ))|dθ|V0φ0|+B(δ)1δȷ0Eδ(|δ1δ(ȷθ)δ|)|V(θ)φ(s)|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))˜φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθξ1+B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)φ(θ)|dθ+ȷ0ζ(|V(θ)φ(θ)|+C|V(θ)φ(θ)|+D|V(θ)φ(θ)|)dθ+ξ2ȷ0dθξ1+B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)φ(θ)|dθ+ȷ0ζ(1+C+D)|V(θ)φ(θ)|dθ+ξ2ȷξ1+B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)φ(θ)|dθ+ȷ0[V(ȷ)x(ȷ,y(ȷ))]|V(θ)φ(θ)|dθ+ξ2T|V(ȷ)φ(ȷ)|ξ1+ξ2T+ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V(ȷ)φ(θ)|dθ.

    By Lemma 2.12, we get

    |V(ȷ)φ(ȷ)|(ξ1+ξ2T)exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI. (6.4)

    Let any λ,λ0R and

    dVdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ),ȷI, (7.1)
    V(0)=V0R. (7.2)
    dVdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ)]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ0),ȷI, (7.3)
    V(0)=V0R. (7.4)

    Theorem 7.1. Let the function Θ satisfy Theorem 4.2. Suppose there exists ω,uC(I,R+) such that,

    |Θ(ȷ,V,P1V,P2V,λ)Θ(ȷ,φ,P1φ,P2φ,λ)|ω(ȷ)|Vφ|,|Θ(ȷ,V,P1V,P2V,λ)Θ(ȷ,V,P1V,P2V,λ0)|u(ȷ)|λλ0|.

    If V1,V2 are the solutions of Eqs (7.1) and (7.3), then

    |V1(ȷ)V2(ȷ)|PT|λλ0|exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI, (7.5)

    where P=supȷIu(ȷ).

    Proof. Let, for any ȷI,

    |V1(ȷ)V2(ȷ)|B(δ)1δ|ȷ0Eδ[δ1δ(ȷθ)δ](V2(θ)V1(θ)dθ)|+ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθB(δ)1δȷ0Eδ(|δ1δ(ȷθ)δ|)|V1(θ)V2(θ)|dθ+ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)|dθ+ȷ0|Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθB(δ)1δȷ0Eδ(δ1δ(ȷθ)δ)|V1(θ)V2(θ)|dθ+ȷ0ζ(|V1(θ)V2(θ)|+C|V1(θ)V2(θ)|+D|V1(θ)V2(θ)|)dθ+ȷ0u(θ)|λλ0|dθB(δ)1δȷ0Eδ(δ1δTδ)|V1(θ)V2(θ)|dθ+ȷ0ζ(1+C+D)|V1(θ)V2(θ)|dθ+Pȷ|λλ0|B(δ)1δȷ0Eδ(δ1δTδ)|V1(θ)V2(θ)|dθ+ȷ0[V(ȷ)x(ȷ,y(ȷ))]|V1(θ)V2(θ)|dθ+PT|λλ0|ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V1(θ)V2(θ)|dθ+PT|λλ0|.

    By Lemma 2.12,

    |V1(ȷ)V2(ȷ)|PT|λλ0|exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI. (7.6)

    Consider a nonlinear ABR fractional derivative with neutral integro-differential equations of the form:

    dVdȷ+0D12ȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI=[0,2], (8.1)
    V(0)=1R. (8.2)

    φ:(I×R×R×R)R is a continuous nonlinear function such that,

    φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=|V(ȷ)|+13+M(ȷ)+N(ȷ),ȷI,

    and

    M(ȷ)=B(12){ȷE12,2(ȷ12)+E12(ȷ12)ȷ1},N(ȷ)=B(12){E12,2(ȷ12)+ȷE12(ȷ12)1}.

    We observe that for all V,φR and ȷI,

    |φ(ȷ,V,P1V,P2V)φ(ȷ,φ,P1φ,P2φ)|=|(|V(ȷ)|+13+M(ȷ)+N(ȷ))(|φ(ȷ)|+13+M(ȷ)+N(ȷ))|13|Vφ|. (8.3)

    The function φ satisfies (H1)(H4) with constant 13. From Theorem 4.2, we have δ=12 and T = 2 which is substitute in Eq (4.2), and we get

    B(12)<18E12,2(212). (8.4)

    If the function B(δ) satisfies Eq (8.4), then Eqs (8.1) and (8.2) have a unique solution.

    V(ȷ)=ȷ3+1,ȷ[0,2]. (8.5)

    In this research article, we explored multi-derivative nonlinear neutral fractional integro-differential equations involving the ABR fractional derivative. The elementary results of the existence, uniqueness and dependence solution on various data are based on the Prabhakar fractional integral operator εαδ,η,V;c+ involving a generalized ML function. The existence results are obtained by Krasnoselskii's fixed point theorem, and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality with continuous functions.

    The research on Existence and data dependence results for neutral fractional order integro-differential equations by Khon Kaen University has received funding support from the National Science, Research and Innovation Fund.

    The authors declare no conflict of interest.



    [1] María E, Fernández-Giménez M, Batkhishig B, et al. (2012) Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters in Mongolia. Global Environ Change 22: 836-851. doi: 10.1016/j.gloenvcha.2012.07.001
    [2] Li YJ, Ye T, Liu WH, et al. (2018) Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: Quantification based on generalized additive models. Sci Total Environ 625: 87-95. doi: 10.1016/j.scitotenv.2017.12.230
    [3] Tachiiri K, Shinoda M, Klinkenberg B, et al. (2008) Assessing Mongolian snow disaster risk using livestock and satellite data. J Arid Environ 72: 2251-2263. doi: 10.1016/j.jaridenv.2008.06.015
    [4] Bocchiola D, Janetti EB, Gorni E, et al. (2008) Regional evaluation of three day snow depth for avalanche hazard mapping in Switzerland. Nat Hazards Earth Syst Sci 8: 685-705. doi: 10.5194/nhess-8-685-2008
    [5] Delparte D, Jamieson B, Waters N (2008) Statistical runout modeling of snow avalanches using GIS in Glacier National Park, Canada. Cold Reg Sci Technol 54: 183-192. doi: 10.1016/j.coldregions.2008.07.006
    [6] Yin H, Cao C, Xu M, et al. (2016) Long-term snow disasters during 1982-2012 in the Tibetan Plateau using satellite data. Geomat Nat Haz Risk 8: 466-477. doi: 10.1080/19475705.2016.1238851
    [7] Nakamura M, Shindo N (2010) Effects of snow cover on the social and foraging behavior of the great tit Parus major. Ecol Res 16: 301-308. doi: 10.1046/j.1440-1703.2001.00397.x
    [8] Wang W, Liang T, Huang X, et al. (2013) Early warning of snow-caused disasters in pastoral areas on the Tibetan Plateau. Nat Hazards Earth Syst Sci 13: 1411-1425. doi: 10.5194/nhess-13-1411-2013
    [9] Gao JL, Huang XD, Ma XF, et al. (2017) Snow Disaster Early Warning in Pastoral Areas of Qinghai Province, China. Remote Sens 9: 475. doi: 10.3390/rs9050475
    [10] Yang QY (1995) Geographic museum. Henan: Henan Education Press, 20. Available from: http://hnjybjb.51sole.com/.
    [11] Li M, Wang XG, Yang JQ, et al. (2000) Encyclopedia of Yellow River Culture. Sichuan: Sichuan Dictionary Publishing House.
    [12] Wen KG, Liu GX (2008) China Meteorological Disaster Ceremony: Tibet. Meteorological Press, Beijing, 34-58. Available from: http://www.qxcbs.com/.
    [13] Geng Y (2008) 30 Years of Civil Administration: Qinghai 1978-2008. China Society Press, Beijing, 5. Available from: http://shcbs.mca.gov.cn/.
    [14] Shi XH, Li FX, Zhaxi CR, et al. (2006) Snow cover and snow disaster change in Qinghai Province from 1961 to 2004. Chin J Appl Meteorol 3: 376-382.
    [15] Wu JD, Ning L, Yang HJ, et al. (2008) Risk evaluation of heavy snow disasters using BP artificial neural network: the case of Xilingol in Inner Mongolia. Stoch Environ Res Risk Assess 22: 719-725. doi: 10.1007/s00477-007-0181-7
    [16] Wang SJ, Zhou LY, Wei YQ (2019) Integrated risk assessment of snow disaster over the Qinghai-Tibet Plateau. Geomatics Nat Hazards Risk 10: 740-757. doi: 10.1080/19475705.2018.1543211
    [17] Wen KG, Wang X (2008) China Meteorological Disaster Ceremony: Qinghai. Meteorological Press, Beijing, 169-184. Available from: http://www.qxcbs.com/.
    [18] Dong WJ (2004) Yearbook of Meteorological Disasters in China. Beijing: China Meteorological Press, 119-120,123-124. Available from: http://www.qxcbs.com/.
    [19] Dong WJ (2005) Yearbook of Meteorological Disasters in China. Beijing: China Meteorological Press, 141-142,146-147. Available from: http://www.qxcbs.com/.
    [20] Dong WJ (2006) Yearbook of Meteorological Disasters in China. Beijing: China Meteorological Press, 159-160,164-165. Available from: http://www.qxcbs.com/.
    [21] Dong WJ (2007) Yearbook of Meteorological Disasters in China. Beijing: China Meteorological Press, 178-179,183. Available from: http://www.qxcbs.com/.
    [22] Xiao ZW (2008) Yearbook of Meteorological Disasters in China. Beijing: China Meteorological Press, 169-170,173-174. Available from: http://www.qxcbs.com/.
    [23] Xiao ZW (2009) Yearbook of Meteorological Disasters in China. Beijing: China Meteorological Press, 140-141,145-147. Available from: http://www.qxcbs.com/.
    [24] Qinghai Meteorological Bureau, DB63/T 372-2001. Meteorological disaster standard, 2001. Available from: https://wenku.baidu.com/view/267b0a45a8956bec0975e38c.html.
    [25] Inspection and Quarantine of the People's Republic of China; Standardization Administration of China, GB/T 20482-2006. General Administration of Quality Supervision, China Meteorological Administration, 2006.
    [26] Guo XN, Li L, Liu CH, et al. (2010) Spatial and temporal distribution characteristics of snow disasters in Qinghai Plateau from 1961 to 2008. Clim Change Res 5: 332-337.
    [27] Zhang TT, Yan JP, Liao GM, et al. (2014) Spatial and temporal distribution characteristics of snow disasters over Qinghai-Tibet Plateau in recent 51 years. Bull Soil Water Conserv 34: 242-245.
    [28] Huang XQ, Tan SY, Ciwang DZ (2018) Changes of snow disasters and their relationship with atmospheric circulation in Tibetan Plateau under the background of climate warming. Plateau Meteorol, 325-332.
    [29] Kuang XX, Jiao JJ (2016) Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res Atmos 121: 3979-4007. doi: 10.1002/2015JD024728
    [30] Song SY, Wuang PX, Du J, et al. (2013) Tibet climate. Beijing: China Meteorological Press, 102-103.
    [31] Deng H, Pepin NC, Chen Y (2017) Changes of snowfall under warming in the Tibetan Plateau. J Geophys Res Atmos 122: 7323-7341. doi: 10.1002/2017JD026524
    [32] Ma WD, Liu FG, Zhou Q, et al. (2020) Characteristics of extreme precipitation over the Tibetan Plateau from 1961 to 2017. J Nat Resour, 3039-3050.
    [33] Ding YJ, Mu CC, Wu TH, et al. (2020) Increasing cryospheric hazards in a warming climate. Earth Sci Rev 213: 103500. doi: 10.1016/j.earscirev.2020.103500
    [34] Long RJ, Liu XY, Cui GX, et al. (2011) Socio-economic changes in pastoral systems on the Tibetan Plateau, Pastoralism and rangeland management on the Tibetan Plateau in the context of climate and global change, Federal Ministry for Economic Cooperation and Development, Berlin, Germany, 239-255.
    [35] IPCC (2019) Special Report on the Ocean and Cryosphere in a Changing Climate. Available from: https://www.ipcc.ch/srocc/home/.
  • This article has been cited by:

    1. Andreas Frommer, Daniel B. Szyld, On the convergence of randomized and greedy relaxation schemes for solving nonsingular linear systems of equations, 2023, 92, 1017-1398, 639, 10.1007/s11075-022-01431-7
    2. Yansheng Su, Deren Han, Yun Zeng, Jiaxin Xie, On greedy multi-step inertial randomized Kaczmarz method for solving linear systems, 2024, 61, 0008-0624, 10.1007/s10092-024-00621-0
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2195) PDF downloads(56) Cited by(2)

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog