Research article

The dynamics of a delayed predator-prey model with square root functional response and stage structure

  • Received: 10 March 2024 Revised: 30 April 2024 Accepted: 11 May 2024 Published: 15 May 2024
  • In recent years, one of the most prevalent matters in population ecology has been the study of predator-prey relationships. In this context, this paper investigated the dynamic behavior of a delayed predator-prey model considering square root type functional response and stage structure for predators. First, we obtained positivity and boundedness of the solutions and existence of equilibrium points. Second, by applying the stability theory of delay differential equations and the Hopf bifurcation theorem, we discussed the system's local stability and the existence of a Hopf bifurcation at the positive equilibrium point. Moreover, the properties of the Hopf bifurcation were deduced by using the central manifold theorem and normal form method. Analytical results showed that when the time delay was less than the critical value, the two populations will coexist, otherwise the ecological balance will be disrupted. Finally, some numerical simulations were also included to verify the theoretical results.

    Citation: Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang. The dynamics of a delayed predator-prey model with square root functional response and stage structure[J]. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150

    Related Papers:

  • In recent years, one of the most prevalent matters in population ecology has been the study of predator-prey relationships. In this context, this paper investigated the dynamic behavior of a delayed predator-prey model considering square root type functional response and stage structure for predators. First, we obtained positivity and boundedness of the solutions and existence of equilibrium points. Second, by applying the stability theory of delay differential equations and the Hopf bifurcation theorem, we discussed the system's local stability and the existence of a Hopf bifurcation at the positive equilibrium point. Moreover, the properties of the Hopf bifurcation were deduced by using the central manifold theorem and normal form method. Analytical results showed that when the time delay was less than the critical value, the two populations will coexist, otherwise the ecological balance will be disrupted. Finally, some numerical simulations were also included to verify the theoretical results.



    加载中


    [1] Lotka, Elements of Physical Biology, Williams and Wilkins Company, Baltimore, 1925.
    [2] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12–13. https://doi.org/10.1038/119012a0 doi: 10.1038/119012a0
    [3] Y. Y. Huang, F. Y. Li, J. P. Shi, Stability of synchronized steady state solution of diffusive Lotka-Volterra predator-prey model, Appl. Math. Lett., 105 (2020). https://doi.org/10.1016/j.aml.2020.106331
    [4] B. Ghanbari, S. Djilali, Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative, Math. Meth. Appl. Sci., 43 (2020), 1736–1752. https://doi.org/10.1002/mma.5999 doi: 10.1002/mma.5999
    [5] Y. Z. Liu, Y. P. Yang, Dynamics and bifurcation analysis of a delay non-smooth Filippov Leslie-Gower prey-predator model, Nonlinear Dyn., 111 (2023), 18541–18557. https://doi.org/10.1007/s11071-023-08789-w doi: 10.1007/s11071-023-08789-w
    [6] M. L. Deng, Y. B. Fan, Invariant measure of a stochastic hybrid predator-prey model with infected prey, Appl. Math. Lett., 124 (2022). https://doi.org/10.1016/j.aml.2021.107670
    [7] C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385–395. https://doi.org/10.4039/Ent91385-7 doi: 10.4039/Ent91385-7
    [8] H. A. A. El-Saka, S. Lee, B. Jang, Dynamic analysis of fractional-order predator-prey biological economic system with Holling type Ⅱ functional response, Nonlinear Dyn., 96 (2019), 407–416. https://doi.org/10.1007/s11071-019-04796-y doi: 10.1007/s11071-019-04796-y
    [9] C. L. Qin, J. J. Du, Y. X. Hui, Dynamical behavior of a stochastic predator-prey model with Holling-type Ⅲ functional response and infectious predator, AIMS Math., 7 (2022), 7403–7418. https://doi.org/10.3934/math.2022413 doi: 10.3934/math.2022413
    [10] S. M. Li, X. Wang, X. Li, K. Wu, Relaxation oscillations for Leslie-type predator-prey model with Holling Type I response functional function, Appl. Math. Lett., 120 (2021). https://doi.org/10.1016/j.aml.2021.107328
    [11] M. J. Ruan, C. Li, X. Y. Li, Codimension two 1: 1 strong resonance bifurcation in a discrete predator-prey model with Holling IV functional response, AIMS Math., 7 (2021), 3150–3168. https://doi.org/10.3934/math.2022174 doi: 10.3934/math.2022174
    [12] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., (1975), 331–340. https://doi.org/10.2307/3866
    [13] D. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975) 881–892. https://doi.org/10.2037/1936298
    [14] P. H. Crowley, E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc., 8 (1989), 211–221. https://doi.org/10.2307/1467324 doi: 10.2307/1467324
    [15] V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. Real World Appl., 12 (2011), 2319–2338. https://doi.org/10.1016/j.nonrwa.2011.02.002 doi: 10.1016/j.nonrwa.2011.02.002
    [16] P. A Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. Real World Appl., 13 (2012), 1837–1843. https://doi.org/10.1016/j.nonrwa.2011.12.014 doi: 10.1016/j.nonrwa.2011.12.014
    [17] S. M. Salman, A. M. Yousef, A. A. Elsadany, Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response, Chaos Solit. Fractals, 93 (2016), 20–31. https://doi.org/10.1016/j.chaos.2016.09.020 doi: 10.1016/j.chaos.2016.09.020
    [18] A. Suleman, R. Ahmed, F. S. Alshammari, N. A Shah, Dynamic complexity of a slow-fast predator-prey model with herd behavior, AIMS Math., 8 (2023), 24446–24472. https://doi.org/10.3934/math.20231247 doi: 10.3934/math.20231247
    [19] M. X. He, Z. Li, Global dynamics of a Leslie-Gower predator-prey model with square root response function, Appl. Math. Lett., 140 (2023). https://doi.org/10.1016/j.aml.2022.108561
    [20] M. Lin, Y. Chai, X. Yang, Y. Wang, Spatiotemporal patterns induced by Hopf bifurcations in a homogeneous diffusive predator-prey system, Math. Probl. Eng., 2019 (2019). https://doi.org/10.1155/2019/3907453 doi: 10.1155/2019/3907453
    [21] P. Chakraborty, U. Ghosh, S. Sarkar, Stability and bifurcation analysis of a discrete prey-predator model with square root functional response and optimal harvesting, J. Biol. Syst., 28 (2020), 91–110. https://doi.org/10.1142/S0218339020500047 doi: 10.1142/S0218339020500047
    [22] M. G. Mortuja, M. K. Chaube, S. Kumar, Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response, Chaos Solit. Fractals, 148 (2021). https://doi.org/10.1016/j.chaos.2021.111071
    [23] J. G. Tan, W. J. Wang, J. F. Feng, Transient dynamics analysis of a predator-prey system with square root functional responses and random perturbation, Mathematics, 10 (2022) 1–12. https://doi.org/10.3390/math10214087
    [24] X. Y. Meng, F. L Meng, Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting, AIMS Math., 6 (2021), 5695–5719. https://doi.org/10.3934/math.2021336 doi: 10.3934/math.2021336
    [25] M. S. Rahman, S. Pramanik, E. Venturino, An ecoepidemic model with healthy prey herding and infected prey drifting away, Nonlinear Anal.-Model Control, 28 (2023), 326–364. https://doi.org/10.15388/namc.2023.28.31549 doi: 10.15388/namc.2023.28.31549
    [26] L. H. Dai, J. J. Wang, Y. G. Ni, B. Xu, Dynamical analysis of a new fractional-order predator-prey system with Holling type-Ⅲ functional, Adv. Differ. Equations, 2021 (2021), 1–13. https://doi.org/10.1186/s13662-020-03169-9 doi: 10.1186/s13662-020-03169-9
    [27] X. Y. Meng, H. F. Huo, X. B. Zhang, Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey, J. Appl. Math. Comput., 60 (2019), 1–25. https://doi.org/10.1007/s12190-018-1201-0 doi: 10.1007/s12190-018-1201-0
    [28] X. Y. Zhou, Stability and Hopf bifurcation analysis of a stage-structured predator-prey model with delay, Axioms, 11 (2022). https://doi.org/10.3390/axioms11100575
    [29] X. Zhao, Z. J. Zeng, Stationary distribution and extinction of a stochastic ratio-dependent predator-prey system with stage structure for the predator, Physica A, 545 (2020). https://doi.org/10.1016/j.physa.2019.123310
    [30] X. Zhang, R. X. Shi, R. Z. Yang, Z. Z. Wei, Dynamical behaviors of a delayed prey-predator model with Beddington-DeAngelis functional response: stability and periodicity, Int. J. Bifurcation Chaos, 30 (2020). https://doi.org/10.1142/S0218127420502442
    [31] R. Z. Yang, D. Jin, W. L. Wang, A diffusive predator-prey model with generalist predator and time delay, AIMS Math., 7 (2022), 4574–4591. https://doi.org/10.3934/math.2022255 doi: 10.3934/math.2022255
    [32] X. W. Zhang, W. F. Huang, J. X. Ma, R. Z. Yang, Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior, Electron. Res. Arch., 30 (2022), 2510–2523. https://doi.org/10.3934/era.2022128 doi: 10.3934/era.2022128
    [33] M. Peng, R. Lin, Y. Chen, Z. D. Zhang, M. M. Khater, Qualitative analysis in a Beddington-DeAngelis type predator-prey model with two time delays, Symmetry-Basel, 14 (2022). https://doi.org/10.3390/sym14122535
    [34] Q. M. Zhang, D. Q. Jiang, Dynamics of stochastic predator-prey systems with continuous time delay, Chaos Solit. Fractals, 152 (2021). https://doi.org/10.1016/j.chaos.2021.111431
    [35] C. J. Xu, D. Mu, Y. L. Pan, C. Aouiti, L.Y. Yao, Exploring bifurcation in a fractional-order predator-prey system with mixed delays, J. Appl. Math. Comput., 13 (2023), 1119–1136. https://doi.org/10.11948/20210313 doi: 10.11948/20210313
    [36] Y. J. Xiang, Y. Q. Jiao, X. Wang, R. Z. Yang, Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator, Electron. Res. Arch., 31 (2023), 2120–2138. https://doi.org/10.3934/era.2023109 doi: 10.3934/era.2023109
    [37] Y. L. Song, J. J. Wei, Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos, Chaos Solit. Fractals, 22 (2004), 75–91. https://doi.org/10.1016/j.chaos.2003.12.075 doi: 10.1016/j.chaos.2003.12.075
    [38] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Application of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(206) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog