This paper focuses on the energy equality for weak solutions of the nonhomogeneous incompressible Hall-magnetohydrodynamics equations in a bounded domain Ω⊂Rn (n⩾2). By exploiting the special structure of the nonlinear terms and using the coarea formula, we obtain some sufficient conditions for the regularity of weak solutions to ensure that the energy equality is valid. For the special case n=3, p=q=2, our results are consistent with the corresponding results obtained by Kang-Deng-Zhou in [Results Appl. Math. 12:100178, 2021]. Additionally, we establish the sufficient conditions concerning ∇u and ∇b, instead of u and b.
Citation: Xun Wang, Qunyi Bie. Energy equality for the multi-dimensional nonhomogeneous incompressible Hall-MHD equations in a bounded domain[J]. Electronic Research Archive, 2023, 31(1): 17-36. doi: 10.3934/era.2023002
[1] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[2] | José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar . Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29(1): 1783-1801. doi: 10.3934/era.2020091 |
[3] | Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309 |
[4] | Kun Cheng, Yong Zeng . On regularity criteria for MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2023, 31(8): 4669-4682. doi: 10.3934/era.2023239 |
[5] | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164 |
[6] | Wei-Xi Li, Rui Xu . Well-posedness in Sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity. Electronic Research Archive, 2021, 29(6): 4243-4255. doi: 10.3934/era.2021082 |
[7] | Ahmad Mohammad Alghamdi, Sadek Gala, Chenyin Qian, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations. Electronic Research Archive, 2020, 28(1): 183-193. doi: 10.3934/era.2020012 |
[8] | Hua Qiu, Zheng-An Yao . The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28(4): 1375-1393. doi: 10.3934/era.2020073 |
[9] | Wenda Pei, Yong Zeng . Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2025, 33(3): 1306-1322. doi: 10.3934/era.2025058 |
[10] | Wenjuan Liu, Jialing Peng . Analyticity estimates for the 3D magnetohydrodynamic equations. Electronic Research Archive, 2024, 32(6): 3819-3842. doi: 10.3934/era.2024173 |
This paper focuses on the energy equality for weak solutions of the nonhomogeneous incompressible Hall-magnetohydrodynamics equations in a bounded domain Ω⊂Rn (n⩾2). By exploiting the special structure of the nonlinear terms and using the coarea formula, we obtain some sufficient conditions for the regularity of weak solutions to ensure that the energy equality is valid. For the special case n=3, p=q=2, our results are consistent with the corresponding results obtained by Kang-Deng-Zhou in [Results Appl. Math. 12:100178, 2021]. Additionally, we establish the sufficient conditions concerning ∇u and ∇b, instead of u and b.
The goal of this paper is to study the energy equality for weak solutions of the nonhomogeneous incompressible Hall-magnetohydrodynamics (Hall-MHD) equations in Ω×(0,T),
∂t(ρu)+div(ρu⊗u)−μΔu+∇P−(∇×b)×b=0, | (1.1) |
∂tb+dI∇×((∇×b)×bρ)−∇×(u×b)−Δb=0, | (1.2) |
∂tρ+div(ρu)=0, | (1.3) |
divu=0,divb=0, | (1.4) |
with initial data
ρu(x,0)=ρ0u0(x),ρ(x,0)=ρ0(x),b(x,0)=b0(x), | (1.5) |
and homogeneous Dirichlet boundary conditions
u=0,b=0on∂Ω×(0,T), | (1.6) |
where Ω⊂Rn (n⩾2) is bounded with ∂Ω∈C2. ρ,u,b and P are the density, velocity field, magnetic field and scalar pressure, respectively. The constant μ>0 represents the viscosity coefficient of the flow. The term dI∇×((∇×b)×bρ) denotes the Hall effect, and dI is the Hall coefficient.
In 1960, Lighthill [1] said that the MHD equations cannot provide a precise description of physical phenomena and introduced first the Hall term into the MHD equations, which constitute the so-called Hall-MHD equations. Subsequently, Arichetogaray et al. [2] analyzed the Hall-MHD equations from either a two-fluid Euler-Maxwell system for electrons and ions or kinetic models, which are used for describing many physical phenomena in geophysics and astrophysics, such as the magnetic reconnection of space plasma, star formation and neutron stars. From the mathematical viewpoint, the Hall-MHD equations have been widely studied, involving the local and global well-posedness [2,3,4,5], blow-up criteria [4,6], large time behavior [7,8,9,10], Liouville-type theorems [11,12,13,14] and energy conservation [15,16]. It is worth pointing out that Kang et al. [16] recently studied the energy conservation for systems (1.1)–(1.4) in a bounded domain Ω⊂R3 and obtained that if weak solutions (ρ,u,b,P) satisfy
0<c1⩽ρ(x,t)⩽c2<∞,u,b∈L∞(0,T;L2(Ω))∩L2(0,T;H1(Ω)),P∈L2((0,T)×Ω),u,b∈L4((0,T)×Ω),∇×b∈L4((0,T)×Ω), | (1.7) |
then the following energy equality is valid:
∫Ω(12ρ|u|2+12|b|2)dx+∫t0∫Ωμ|∇u|2dxds+∫t0∫Ω|∇b|2dxds=∫Ω(12ρ0|u0|2+12|b0|2)dx,∀t∈(0,T). | (1.8) |
Concerning the energy equality for the MHD equations, one can refer to the works [17,18,19,20], etc.
When b=0, systems (1.1)–(1.4) reduce to the incompressible Navier-Stokes system. For the energy equality of the incompressible Navier-Stokes system, the Lions-Shinbrot type criterion on the velocity was obtained by Lions [21], Shinbrot [22], Da Veiga and Yang [23] and Yu [24]. Later, Yu [25] extended Shinbrot's result to the bounded domain, with an additional Besov regularity imposed on the velocity, which is essential to deal with the boundary effects, and Nguyen et al. [26] handled the boundary effects without requiring extra conditions of velocity field u near the boundary.
For the energy equality of the compressible Navier-Stokes equations, Yu [27] proved the energy equality holds true if u∈LptLqx, ρ is bounded, and √ρ∈L∞(0,T;H1(Ω)). Later on, Chen et al. [28] extended the result of [27] to the bounded domain by performing global mollification. In addition, it is worth mentioning that Berselli and Chiodaroli [29], Liang [30] and Wang and Ye [31] derived the energy equality criteria in terms of the velocity and its gradient.
Inspired by the works [16,26,31], we provide sufficient conditions on the regularity of solutions for systems (1.1)–(1.4) to ensure the energy equality holds. Compared with the results of [16], we obtain the sufficient conditions concerning ∇u and ∇b, rather than u and b, to guarantee that the energy equality is valid.
Before stating our main results, we give the definition of weak solutions to systems (1.1)–(1.4).
Definition 1.1. A couple (ρ,u,b,P) is called a weak solution to systems (1.1)–(1.4) with initial data (1.5) if (ρ,u,b,P) satisfies the following,
1) Equations (1.1)–(1.4) hold in D′(0,T;Ω), and
|b|2,ρ|u|2∈L∞(0,T;L1(Ω)),∇u,∇b∈L2(0,T;L2(Ω)). | (1.9) |
2) ρ(⋅,t)⇀ρ0 in D′(Ω) as t→0, i.e.,
limt→0∫Ωρ(x,t)φ(x)dx=∫Ωρ0(x)φ(x)dx, | (1.10) |
for every test function φ∈C∞0(Ω).
3) (ρu)(⋅,t)⇀ρ0u0 in D′(Ω) as t→0, i.e.,
limt→0∫Ω(ρu)(x,t)ψ(x)dx=∫Ω(ρ0u0)(x)ψ(x)dx, | (1.11) |
for every test vector field ψ∈C∞0(Ω)n.
4) The energy inequality holds, i.e.,
∫Ω(12ρ|u|2+12|b|2)dx+∫t0∫Ωμ|∇u|2dxds+∫t0∫Ω|∇b|2dxds⩽∫Ω(12ρ0|u0|2+12|b0|2)dx. | (1.12) |
Next, we state our main results as follows.
Theorem 1.1. Let Ω⊂Rn(n⩾2) be a bounded domain with C2 boundary ∂Ω. The energy equality (1.8) of weak solutions (ρ,u,b,P) to systems (1.1)–(1.4) with initial data (1.5) and Dirichlet boundary conditions (1.6) is valid provided
0<c1⩽ρ(x,t)⩽c2<∞,P∈L2(0,T;L2(Ω)),∇×b∈L2pp−1(0,T;L2qq−1(Ω)),∇u,∇b∈Lp(0,T;Lq(Ω)),u,b∈L2pp−1(0,T;L2qq−1(Ω))∩Lp(0,T;Lq(Ω)), | (1.13) |
where 1<p,q<∞.
Remark 1.1. Thanks to the embeddings
{L2pp−1(0,T;L2qq−1(Ω))↪Lp(0,T;Lq(Ω)),1<p,q⩽3,Lp(0,T;Lq(Ω))↪L2pp−1(0,T;L2qq−1(Ω)),p,q>3, |
the conditions u,b∈L2pp−1(0,T;L2qq−1(Ω))∩Lp(0,T;Lq(Ω)) in (1.13) could be replaced by the following:
u,b∈{L2pp−1(0,T;L2qq−1(Ω)),1<p,q⩽3,Lp(0,T;Lq(Ω)),p,q>3. | (1.14) |
Remark 1.2. Setting n=3, p=q=2 in Theorem 1.1, we obtain the sufficient conditions in (1.7) due to the work [16].
On the other hand, when n=3, we get the following corollary by exploiting the Gagliardo-Nirenberg inequality.
Corollary 1.1. Let Ω⊂R3 be a bounded domain with C2 boundary ∂Ω and (ρ,u,b,P) be a weak solution of systems (1.1)–(1.4) with initial data (1.5) and Dirichlet boundary conditions (1.6). Assume that one of the following conditions is satisfied:
1) 0<c1⩽ρ(x,t)⩽c2<∞,P∈L2(0,T;L2(Ω)),∇×b∈L4(0,T;L4(Ω)),
u,b∈Ls(0,T;Lt(Ω))with{2s+2t=1,t⩾4,1s+3t=1,3<t<4; | (1.15) |
2) 0<c1⩽ρ(x,t)⩽c2<∞,P∈L2(0,T;L2(Ω)),∇×b∈L2pp−1(0,T;L2qq−1(Ω)),
∇u,∇b∈Lp(0,T;Lq(Ω))with{1p+65q=1,95⩽q⩽3,1p+3q=2,32<q<95. | (1.16) |
Then, the energy equality (1.8) holds.
Remark 1.3. The conditions (1.16) show that we can get the regularity involving ∇u and ∇b, rather than u and b, to ensure that the energy equality (1.8) is valid.
Let ηε:Rn→R be a standard mollifier, i.e., η(x)=C0e−11−|x|2 for |x|<1 and η(x)=0 for |x|⩾1, where C0 is a constant such that ∫Rnη(x)dx=1. For any ε>0, we define the re-scaled mollifier ηε(x)=1εnη(xε). For any function f∈L1loc(Ω), its mollified version is defined as
fε(x)=(f∗ηε)(x)=∫Rnf(x−y)ηε(y)dy,x∈Ωε, |
where Ωε=:{x∈Ω:d(x,∂Ω)>ε}.
Next, we recall the results involving the mollifier established in [26].
Lemma 2.1. ([26]) Let 2⩽n∈N, Ω⊂Rn be a bounded domain with C2 boundary ∂Ω, 1⩽p,q⩽∞ and f:Ω×(0,T)→R.
1) Suppose that f∈Lp(0,T;Lq(Ω)). Then, for any 0<ε<δ, there holds
‖∇fε‖Lp(0,T;Lq(Ωδ))⩽Cε−1‖f‖Lp(0,T;Lq(Ω)). | (2.1) |
Moreover, if p,q<∞, then
lim supε→0ε‖∇fε‖Lp(0,T;Lq(Ωδ))=0. |
2) Assume f∈Lp(0,T;Lq(Ω)) with p,q<∞ and g:Ω×(0,T)→R with 0<c1⩽g⩽c2<∞. Then, for any 0<ε<δ, there holds
‖∇(fεgε)‖Lp(0,T;Lq(Ωδ))⩽C(c1,c2)ε−1‖f‖Lp(0,T;Lq(Ω)). | (2.2) |
Lemma 2.2. Let Ω⊂Rn be a bounded domain with C2 boundary ∂Ω, 1⩽p,q,p1,q1,p2,q2⩽∞ with 1p=1p1+1p2 and 1q=1q1+1q2. Assume f∈Lp1(0,T;W1,q1(Ω)) and g∈Lp2(0,T;Lq2(Ω)). Then, for any 0<ε<δ small, there holds
‖(fg)ε−fεgε‖Lp(0,T;Lq(Ω2δ))⩽Cε‖f‖Lp1(0,T;W1,q1(Ωδ))‖g‖Lp2(0,T;Lq2(Ωδ)). | (2.3) |
Moreover, if p2,q2<∞, then
lim supε→0ε−1‖(fg)ε−fεgε‖Lp(0,T;Lq(Ω2δ))=0. | (2.4) |
Remark 2.1. The above lemma with p=q,p1=q1 and p2=q2 was proved in [26].
Proof. The proof is similar to that of [19,Lemma 2.2]. For any (x,s)∈Ω2δ×(0,T), Ω2δ⊂Ωδ⊂Ω, we know that
(fg)ε−fεgε=Rε−(fε−f)(gε−g), | (2.5) |
and
Rε=∫Ω(f(y,s)−f(x,s))(g(y,s)−g(x,s))ηε(x−y)dy=∫Ω(f(y,s)−f(x,s))(g(y,s)−g(x,s))1εnη(x−yε)dy=∫B(x,ε)(f(y,s)−f(x,s))(g(y,s)−g(x,s))1εnη(x−yε)dy=∫B(0,1)(f(x+εz,s)−f(x,s))(g(x+εz,s)−g(x,s))η(z)dz, |
where z=y−xε and B(x,ε) is an open ball centered at x with radius ε. The triangle inequality yields
‖(fg)ε−fεgε‖Lp(0,T;Lq(Ω2δ))⩽‖Rε‖Lp(0,T;Lq(Ω2δ))+‖(fε−f)(gε−g)‖Lp(0,T;Lq(Ω2δ)). | (2.6) |
Next, we will handle the term ‖Rε‖Lp(0,T;Lq(Ω2δ)). By utilizing the Minkowski inequality and Hölder inequality, we get
‖Rε‖Lp(0,T;Lq(Ω2δ))=‖∫B(0,1)(f(x+εz,s)−f(x,s))(g(x+εz,s)−g(x,s))η(z)dz‖Lp(0,T;Lq(Ω2δ))⩽∫B(0,1)‖(f(x+εz,s)−f(x,s))(g(x+εz,s)−g(x,s))‖Lp(0,T;Lq(Ω2δ))|η(z)|dz⩽∫B(0,1)‖f(x+εz,s)−f(x,s)‖Lp1(0,T;Lq1(Ω2δ))×(‖g(x+εz,s)‖Lp2(0,T;Lq2(Ω2δ))+‖g(x,s)‖Lp2(0,T;Lq2(Ω2δ)))dz. | (2.7) |
Due to |z|⩽1, we have
‖g(x+εz,s)‖Lp2(0,T;Lq2(Ω2δ))={∫T0(∫Ω2δ|g(x+εz,s)|q2dx)p2q2ds}1p2⩽{∫T0(∫Ωδ|g(x+εz,s)|q2d(x+εz))p2q2ds}1p2=‖g(x,s)‖Lp2(0,T;Lq2(Ωδ)), | (2.8) |
and
‖g(x,s)‖Lp2(0,T;Lq2(Ω2δ))⩽‖g(x,s)‖Lp2(0,T;Lq2(Ωδ)). | (2.9) |
On the other hand, in view of Leibniz's formula, we conclude that
f(x+εz,s)−f(x,s)=∫10∂θf(x+θεz,s)dθ=∫10∇f(x+θεz,s)dθ⋅εz. |
Taking the norm for both sides of the above formula, we deduce
‖(f(x+εz,s)−f(x,s))‖Lp1(0,T;Lq1(Ω2δ))=ε‖∫10∇f(x+θεz,s)dθ⋅z‖Lp1(0,T;Lq1(Ω2δ))⩽ε∫10‖∇f(x+θεz,s)‖Lp1(0,T;Lq1(Ω2δ))dθ⩽ε∫10‖∇f(x,s)‖Lp1(0,T;Lq1(Ωδ))dθ⩽Cε‖∇f(x,s)‖Lp1(0,T;Lq1(Ωδ)), | (2.10) |
where we have used the fact that |z|⩽1, θ∈[0,1], and the constant C⩾1 does not rely on θ,z,ε,f and g.
Plugging (2.8)–(2.10) into (2.7) yields
‖Rε‖Lp(0,T;Lq(Ω2δ))⩽Cε‖f‖Lp1(0,T;W1,q1(Ωδ))‖g‖Lp2(0,T;Lq2(Ωδ)). | (2.11) |
For the second term of the right hand side of (2.6), one has
|(fε−f)(gε−g)|=∫Ω|f(y,s)−f(x,s)|ηε(x−y)dy∫Ω|g(y,s)−g(x,s)|ηε(x−y)dy=∫Ω(f(y,s)−f(x,s))1εnη(x−yε)dy∫Ω(g(y,s)−g(x,s))1εnη(x−yε)dy=∫B(x,ε)(f(y,s)−f(x,s))(g(y,s)−g(x,s))1εnη(x−yε)dy=∫B(0,1)(f(x+εz,s)−f(x,s))(g(x+εz,s)−g(x,s))η(z)dz, | (2.12) |
where z=y−xε. Similar to (2.7), we arrive at
‖(fε−f)(gε−g)‖Lp(0,T;Lq(Ω2δ))⩽Cε‖f‖Lp1(0,T;W1,q1(Ωδ))‖g‖Lp2(0,T;Lq2(Ωδ)). | (2.13) |
Combining (2.11) and (2.13), we get
‖(fg)ε−fεgε‖Lp(0,T;Lq(Ω2δ))⩽Cε‖f‖Lp1(0,T;W1,q1(Ωδ))‖g‖Lp2(0,T;Lq2(Ωδ)), | (2.14) |
which yields (2.3), while (2.4) follows from (2.3) by the density arguments.
Taking into account the boundary terms, we need to use the following coarea formula for 0<κ1<κ2 established in [26]:
∫κ2κ1∫∂Ωκg(θ)dHn−1(θ)dκ=∫Ωκ1∖Ωκ2g(x)dx. | (2.15) |
Lemma 2.3. Let Ω⊂Rn be a bounded domain with C2 boundary. If f∈Lp(0,T;W1,q0(Ω)), p,q∈[1,∞), then for ε>0 small,
‖f‖Lp(0,T;Lq(Ω∖Ωε))⩽Cε‖∇f‖Lp(0,T;Lq(Ω∖Ω2ε)). | (2.16) |
Proof. Let ε>0 be small. For any x∈Ω∖Ωε, there exists a unique x∂Ω such that |x∂Ω−x|=d(x,∂Ω). We define the projection mapping as
T(x):=x∂Ω. |
Then, we know that
‖∇T−id‖L∞(Ω∖Ωδ)=o(1)asδ→0, | (2.17) |
where id represents the identity matrix.
Thanks to f=0 on ∂Ω×(0,T), from the coarea formula and Leibniz's rule, we deduce
∫Ω∖Ωε|f(x,s)|qdx=∫ε0∫∂Ωκ|f(θ,s)|qdHn−1(θ)dκ=∫ε0∫∂Ωκ|f(θ,s)−f(T(θ),s)|qdHn−1(θ)dκ⩽∫ε0∫∂Ωκ∫10|∇f(θ+ρ(T(θ)−θ),s)|q|T(θ)−θ|qdρdHn−1(θ)dκ⩽εq∫ε0∫∂Ωκ∫10|∇f(θ+ρ(T(θ)−θ),s)|qdρdHn−1(θ)dκ=εq∫10∫Ω∖Ωε|∇f(x+ρ(T(x)−x),s)|qdxdρ. | (2.18) |
Set Tρ(x)=:x+ρ(T(x)−x). For ε>0 small and ρ∈(0,1), we conclude from (2.17) that
12⩽|det(∇Tρ(x))|⩽32andTρ(Ω∖Ωε)⊂Ω∖Ω2ε. |
Therefore,
∫10∫Ω∖Ωε|∇f(x+ρ(T(x)−x),s)|qdxdρ=∫10∫Tρ(Ω∖Ωε)|∇f(x,s)|qdx|det(∇Tρ)(T−1ρ(x))|dρ⩽2∫Ω∖Ω2ε|∇f(x,s)|qdx, | (2.19) |
which combined with (2.18) yields (2.16).
In this part, we first give the proof of Theorem 1.1. Unlike the periodic region, we are concerned with the boundary terms produced by using integration by parts. Then, making use of the Gagliardo-Nirenberg inequality, we prove Corollary 1.1 by the results of Theorem 1.1.
Proof of Theorem 1.1. First of all, we denote m=:∇×b and mollify the systems (1.1)–(1.4) in space to obtain
∂t(ρu)ε+div(ρu⊗u)ε−μΔuε+∇Pε−(m×b)ε=0, | (3.1) |
∂tbε+dI∇×(m×bρ)ε−∇×(u×b)ε−Δbε=0, | (3.2) |
∂tρε+div(ρu)ε=0, | (3.3) |
divuε=0,divbε=0, | (3.4) |
in Ωε×(0,T). Next, selecting 0<ε<ε1/10<ε2/10<r0/100, we multiply (3.1) by (ρu)ε/ρε and integrate on (τ,t)×Ωε2 with 0<τ<t<T. Choosing ε3>0 small, by integrating with respect to ε2 on (ε1,ε1+ε3), we have
0=1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερε∂t(ρu)εdxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερεdiv(ρu⊗u)εdxdsdε2−1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερεμΔuεdxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερε∇Pεdxdsdε2−1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερε(m×b)εdxdsdε2=:F+G+H+K+L. | (3.5) |
The terms F,G,H,K and L will be estimated, separately, as follows.
Estimate of F. By direct calculations and (3.3), we arrive at
F=12ε3∫ε1+ε3ε1∫tτ∫Ωε2∂t(|(ρu)ε|2ρε)dxdsdε2+12ε3∫ε1+ε3ε1∫tτ∫Ωε2∂tρε|(ρu)ε|2(ρε)2dxdsdε2=12ε3∫ε1+ε3ε1∫tτ∫Ωε2∂t(|(ρu)ε|2ρε)dxdsdε2−12ε3∫ε1+ε3ε1∫tτ∫Ωε2div(ρu)ε|(ρu)ε|2(ρε)2dxdsdε2=:F1+F2, |
where F1 is the desired term, while F2 will be canceled with G4 later.
Estimate of G. Taking advantage of integration by parts and free divergence condition (3.4) implies
G=1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερεdiv[(ρu⊗u)ε−(ρu)ε⊗uε]dxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερεdiv((ρu)ε⊗uε)dxdsdε2=:G1+12ε3∫ε1+ε3ε1∫tτ∫Ωε2∇|(ρu)ε|2uερεdxdsdε2=:G1+12ε3∫ε1+ε3ε1∫tτ∫∂Ωε2|(ρu)ε|2uερεn(θ)dHn−1(θ)dsdε2−12ε3∫ε1+ε3ε1∫tτ∫Ωε2|(ρu)ε|2div(uερε)dxdsdε2=:G1+12ε3∫ε1+ε3ε1∫tτ∫∂Ωε2|(ρu)ε|2uερεn(θ)dHn−1(θ)dsdε2+12ε3∫ε1+ε3ε1∫tτ∫Ωε2div(ρεuε)|(ρu)ε|2(ρε)2dxdsdε2=:G1+12ε3∫ε1+ε3ε1∫tτ∫∂Ωε2|(ρu)ε|2uερεn(θ)dHn−1(θ)dsdε2+12ε3∫ε1+ε3ε1∫tτ∫Ωε2div[(ρεuε)−(ρu)ε]|(ρu)ε|2(ρε)2dxdsdε2+12ε3∫ε1+ε3ε1∫tτ∫Ωε2div(ρu)ε|(ρu)ε|2(ρε)2dxdsdε2=:G1+Gbdr2+G3+G4, |
where the superscript "bdr" in Gbdr2 indicates that the term includes a boundary layer, and it is clear that G4+F2=0. Thus, we only consider the terms G1,Gbdr2 and G3. First of all, for G1 and G3, by exploiting integration by parts, we have
G1=−1ε3∫ε1+ε3ε1∫tτ∫Ωε2∇((ρu)ερε)[(ρu⊗u)ε−(ρu)ε⊗uε]dxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫∂Ωε2(ρu)ερε[(ρu⊗u)ε−(ρu)ε⊗uε]n(θ)dHn−1(θ)dsdε2=:G11+Gbdr12, |
and
G3=−1ε3∫ε1+ε3ε1∫tτ∫Ωε2((ρu)ερε)∇((ρu)ερε)[(ρεuε)−(ρu)ε]dxdsdε2+121ε3∫ε1+ε3ε1∫tτ∫∂Ωε2|(ρu)ε|2(ρε)2[(ρεuε)−(ρu)ε]n(θ)dHn−1(θ)dsdε2=:G31+Gbdr32. |
For G11, by Hölder's inequality, Lemma2.1(ii) and Lemma2.2, we get
|G11|=|1ε3∫ε1+ε3ε1∫tτ∫Ωε2∇(ρu)ερε[(ρu⊗u)ε−(ρu)ε⊗uε]dxdsdε2|⩽1ε3∫ε1+ε3ε1‖∇((ρu)ερε)‖L2pp−1(0,T;L2qq−1(Ω))×‖[(ρu⊗u)ε−(ρu)ε⊗uε]‖L2pp+1(0,T;L2qq+1(Ω))dε2⩽C‖∇((ρu)ερε)‖L2pp−1(0,T;L2qq−1(Ω))ε‖u‖L2pp−1(0,T;L2qq−1(Ω))‖u‖Lp(0,T;W1,q(Ω))⩽C‖u‖2L2pp−1(0,T;L2qq−1(Ω))‖u‖Lp(0,T;W1,q(Ω)), |
which implies
lim supε→0lim supτ→0|G11|=0. |
Similarly, we deduce
|G31|=|1ε3∫ε1+ε3ε1∫tτ∫Ωε2((ρu)ερε)∇((ρu)ερε)[(ρεuε)−(ρu)ε]dxdsdε2|⩽1ε3∫ε1+ε3ε1‖(ρu)ερε‖L2pp−1(0,T;L2qq−1(Ω))‖∇((ρu)ερε)‖L2pp−1(0,T;L2qq−1(Ω))×‖[(ρεuε)−(ρu)ε]‖Lp(0,T;Lq(Ω))dε2⩽C‖∇((ρu)ερε)‖L2pp−1(0,T;L2qq−1(Ω))‖u‖L2pp−1(0,T;L2qq−1(Ω))×ε‖ρ‖L∞(0,T;L∞(Ω))‖u‖Lp(0,T;W1,q(Ω))⩽C‖u‖2L2pp−1(0,T;L2qq−1(Ω))‖ρ‖L∞(0,T;L∞(Ω))‖u‖Lp(0,T;W1,q(Ω)). |
As ρ∈L∞(0,T;L∞(Ω)), u∈Lp(0,T;W1,q(Ω)), we obtain
lim supε→0lim supτ→0|G31|=0. |
Next, we estimate the boundary terms Gbdr2,Gbdr12 and Gbdr32. For Gbdr2, we employ coarea Eq (2.15), Hölder's inequality and Lemma 2.3 to conclude
lim supε1,ε→0lim supτ→0|Gbdr2|=lim supε1,ε→0lim supτ→0|12ε3∫tτ∫Ωε1∖Ωε1+ε3|(ρu)ε|2uερεn(x)dxds|⩽C2ε3‖u‖2L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖u‖Lp(0,T;Lq(Ω∖Ωε3))⩽C‖u‖2L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖∇u‖Lp(0,T;Lq(Ω∖Ω2ε3)). |
Since ∇u∈Lp(0,T;Lq(Ω)) and u∈L2pp−1(0,T;L2qq−1(Ω)), by letting ε3→0, we get
lim supε3→0lim supε1,ε→0lim supτ→0|Gbdr2|=0. |
Likewise, for Gbdr12 and Gbdr32, we have
lim supε1,ε→0lim supτ→0|Gbdr12|=lim supε1,ε→0lim supτ→0|1ε3∫tτ∫Ωε1∖Ωε1+ε3(ρu)ερε[(ρu⊗u)ε−(ρu)ε⊗uε]n(x)dxds|⩽Cε3‖((ρu)ερε)‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖[(ρu⊗u)ε−(ρu)ε⊗uε]‖L2pp+1(0,T;L2qq+1(Ω∖Ωε3))⩽C‖u‖2L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖u‖Lp(0,T;W1,q(Ω∖Ωε3)), |
and
lim supε1,ε→0lim supτ→0|Gbdr32|=lim supε1,ε→0lim supτ→0|12ε3∫tτ∫Ωε1∖Ωε1+ε3|(ρu)ε|2(ρε)2[(ρεuε)−(ρu)ε]n(x)dxds|⩽C2ε3‖|(ρu)ε|2(ρε)2‖Lpp−1(0,T;Lqq−1(Ω∖Ωε3))‖[(ρεuε)−(ρu)ε]‖Lp(0,T;Lq(Ω∖Ωε3))⩽C‖u‖2L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖u‖Lp(0,T;W1,q(Ω∖Ωε3))‖ρ‖L∞(0,T;L∞(Ω∖Ωε3)). |
Owing to the assumption (1.13), by letting ε3→0, we derive
lim supε3→0lim supε1,ε→0lim supτ→0|Gbdr12|=0,lim supε3→0lim supε1,ε→0lim supτ→0|Gbdr32|=0. |
Estimate of H. We see that
H=−1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ε−ρεuερεμΔuεdxdsdε2−1ε3∫ε1+ε3ε1∫tτ∫Ωε2μΔuεuεdxdsdε2=:H1−1ε3∫ε1+ε3ε1∫tτ∫∂Ωε2μ∇uεuεn(θ)dHn−1(θ)dsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2μ|∇uε|2dxdsdε2=:H1+Hbdr2+H3. |
As H3 is the desired term, we only need to handle terms H1 and Hbdr2. For H1, taking advantage of Hölder's inequality and Lemmas2.1(i) and 2.2, we deduce
|H1|=|1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ε−ρεuερεμΔuεdxdsdε2|⩽μ1ε3∫ε1+ε3ε1‖(ρu)ε−ρεuερε‖L2(0,T;L2(Ω))‖Δuε‖L2(0,T;L2(Ω))dε2⩽Cε‖ρ‖L∞(0,T;L∞(Ω))‖u‖L2(0,T;H1(Ω))‖Δuε‖L2(0,T;L2(Ω))⩽C‖ρ‖L∞(0,T;L∞(Ω))‖u‖L2(0,T;H1(Ω))‖∇u‖L2(0,T;L2(Ω)). |
According to u∈L2(0,T;H1(Ω)) and ρ∈L∞(0,T;L∞(Ω)), we get
lim supε→0lim supτ→0|H1|=0. |
The boundary term Hbdr2 is estimated by using coarea Eq (2.15) and Lemma 2.3 as
lim supε1,ε→0lim supτ→0|Hbdr2|=lim supε1,ε→0lim supτ→0|1ε3∫tτ∫Ωε1∖Ωε1+ε3μ∇uεuεn(x)dxds|⩽μCε3‖∇u‖L2(0,T;L2(Ω∖Ωε3))‖u‖L2(0,T;L2(Ω∖Ωε3))⩽C‖∇u‖L2(0,T;L2(Ω∖Ωε3))‖∇u‖L2(0,T;L2(Ω∖Ω2ε3)). |
Since u∈L2(0,T;H1(Ω)), by ε3→0, we obtain
lim supε3→0lim supε1,ε→0lim supτ→0|Hbdr2|=0. |
Estimate of K. In light of the free divergence condition (3.4), we rewrite K as
K=1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ε−ρεuερε∇Pεdxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2∇Pεuεdxdsdε2=:K1+1ε3∫ε1+ε3ε1∫tτ∫∂Ωε2Pεuεn(θ)dHn−1(θ)dsdε2=:K1+Kbdr2. |
For K1, by making use of Hölder's inequality, we have
|K1|=|1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ε−ρεuερε∇Pεdxdsdε2|⩽1ε3∫ε1+ε3ε1‖(ρu)ε−ρεuερε‖L2(0,T;L2(Ω))‖∇Pε‖L2(0,T;L2(Ω))dε2⩽Cε‖ρ‖L∞(0,T;L∞(Ω))‖u‖L2(0,T;H1(Ω))‖∇Pε‖L2(0,T;L2(Ω))⩽C‖ρ‖L∞(0,T;L∞(Ω))‖u‖L2(0,T;H1(Ω))‖P‖L2(0,T;L2(Ω)). |
Due to Lemmas2.1(i) and 2.2, one has
lim supε→0lim supτ→0|K1|=0. |
Exploiting Hölder's inequality, coarea Eq (2.15) and Lemma2.3 again, we deduce
lim supε1,ε→0lim supτ→0|Hbdr2|=lim supε1,ε→0lim supτ→0|1ε3∫tτ∫Ωε1∖Ωε1+ε3Pεuεn(x)dxds|⩽Cε3‖P‖L2(0,T;L2(Ω∖Ωε3))‖u‖L2(0,T;L2(Ω∖Ωε3))⩽C‖P‖L2(0,T;L2(Ω∖Ωε3))‖∇u‖L2(0,T;L2(Ω∖Ω2ε3)). |
Owing to u∈L2(0,T;H1(Ω)) and P∈L2(0,T;L2(Ω)), by ε3→0, we derive
lim supε3→0lim supε1,ε→0lim supτ→0|Kbdr2|=0. |
Estimate of L. First, it is clear that
L=−1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερε(m×b)εdxdsdε2=−1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερε[(m×b)ε−mε×bε]dxdsdε2−1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ε−ρεuερε(mε×bε)dxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2mε[(uε×bε)−(u×b)ε]dxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2bε⋅∇×(u×b)εdxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫∂Ωε2(bε×(u×b)ε)n(θ)dHn−1(θ)dsdε2=:L1+L2+L3+L4+Lbdr5, | (3.6) |
where div(bε×(u×b)ε)=(u×b)ε⋅∇×bε−bε⋅∇×(u×b)ε.
Next, multiplying (3.2) by bε yields
12∂t|bε|2+dI∇×(m×bρ)ε⋅bε−∇×(u×b)ε⋅bε−Δbε⋅bε=0. | (3.7) |
Plugging (3.7) into (3.6), we infer that
L4=1ε3∫ε1+ε3ε1∫tτ∫Ωε212∂t|bε|2dxdsdε2−1ε3∫ε1+ε3ε1∫tτ∫Ωε2Δbε⋅bεdxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2dI∇×(m×bρ)ε⋅bεdxdsdε2=:L41−1ε3∫ε1+ε3ε1∫tτ∫∂Ωε2∇bε⋅bεn(θ)dHn−1(θ)dsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2|∇bε|2dxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2dImε⋅(m×bρ)εdxdsdε2−1ε3∫ε1+ε3ε1∫tτ∫∂Ωε2dIbε×(m×bρ)εn(θ)dHn−1(θ)dsdε2=:L41+Lbdr42+L43+L44+Lbdr45, | (3.8) |
where L41,L43 are our expected terms, and we just need to deal with the rest of the above items.
For L1, applying Hölder's inequality and Lemma2.2, we have
|L1|=|1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ερε[(m×b)ε−mε×bε]dxdsdε2|⩽1ε3∫ε1+ε3ε1‖(ρu)ερε‖L2pp−1(0,T;L2qq−1(Ω))‖[(m×b)ε−mε×bε]‖L2pp+1(0,T;L2qq+1(Ω))dε2⩽C‖u‖L2pp−1(0,T;L2qq−1(Ω))ε‖m‖L2pp−1(0,T;L2qq−1(Ω))‖b‖Lp(0,T;W1,q(Ω)). |
Under the hypothesis (1.13), by ε→0,τ→0, we obtain
lim supε→0lim supτ→0|L1|=0. |
The term L2 is estimated by utilizing Hölder's inequality and Lemma2.2 as
|L2|=|1ε3∫ε1+ε3ε1∫tτ∫Ωε2(ρu)ε−ρεuερε(mε×bε)dxdsdε2|⩽1ε3∫ε1+ε3ε1‖(ρu)ε−ρεuερε‖Lp(0,T;Lq(Ω))‖(mε×bε)‖Lpp−1(0,T;Lqq−1(Ω))dε2⩽Cε‖ρ‖L∞(0,T;L∞(Ω))‖u‖Lp(0,T;W1,q(Ω))‖m‖L2pp−1(0,T;L2qq−1(Ω))‖b‖L2pp−1(0,T;L2qq−1(Ω)). |
As ρ∈L∞(0,T;L∞(Ω)), u∈Lp(0,T;W1,q(Ω)), we get
lim supε→0lim supτ→0|L2|=0. |
Similarly, we deal with L3 and L44 as
|L3|=|1ε3∫ε1+ε3ε1∫tτ∫Ωε2mε[(uε×bε)−(u×b)ε]dxdsdε2|⩽1ε3∫ε1+ε3ε1‖mε‖L2pp−1(0,T;L2qq−1(Ω))‖[(uε×bε)−(u×b)ε]‖L2pp+1(0,T;L2qq+1(Ω))dε2⩽C‖m‖L2pp−1(0,T;L2qq−1(Ω))ε‖u‖Lp(0,T;W1,q(Ω))‖b‖L2pp−1(0,T;L2qq−1(Ω)), |
and
|L44|=|1ε3∫ε1+ε3ε1∫tτ∫Ωε2dImε⋅(m×bρ)εdxdsdε2|⩽C|1ε3∫ε1+ε3ε1∫tτ∫Ωε2mε⋅(m×b)εdxdsdε2|=C|1ε3∫ε1+ε3ε1∫tτ∫Ωε2mε⋅[(m×b)ε−mε×bε]dxdsdε2|⩽C1ε3∫ε1+ε3ε1‖mε‖L2pp−1(0,T;L2qq−1(Ω))‖(m×b)ε−mε×bε‖L2pp+1(0,T;L2qq+1(Ω))dε2⩽Cε‖m‖2L2pp−1(0,T;L2qq−1(Ω))‖b‖Lp(0,T;W1,q(Ω)). |
Then, we deduce that
lim supε→0lim supτ→0|L3|=0,lim supε→0lim supτ→0|L44|=0. |
Next, we treat the terms about the boundary Lbdr42, Lbdr45 and Lbdr5, separately. For Lbdr42, by using coarea Eq (2.15) and Lemma2.3, we have
lim supε1,ε→0lim supτ→0|Lbdr42|=lim supε1,ε→0lim supτ→0|1ε3∫tτ∫Ωε1∖Ωε1+ε3∇bε⋅bεn(x)dxds|⩽Cε3‖∇b‖L2(0,T;L2(Ω∖Ωε3))‖b‖L2(0,T;L2(Ω∖Ωε3))⩽C‖∇b‖L2(0,T;L2(Ω∖Ωε3))‖∇b‖L2(0,T;L2(Ω∖Ω2ε3)), |
which, together with b∈L2(0,T;H1(Ω)), implies
lim supε3→0lim supε1,ε→0lim supτ→0|Lbdr42|=0. |
Similarly, for Lbdr45 and Lbdr5, we get
lim supε1,ε→0lim supτ→0|Lbdr45|=lim supε1,ε→0lim supτ→0|1ε3∫tτ∫Ωε1∖Ωε1+ε3dIbε×(m×bρ)εn(x)dxds|⩽Clim supε1,ε→0lim supτ→0|1ε3∫tτ∫Ωε1∖Ωε1+ε3{bε×[(m×b)ε−mε×bε]+bε×mε×bε}n(x)dxds|⩽Cε3‖bε‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖(m×b)ε−mε×bε‖L2pp+1(0,T;L2qq+1(Ω∖Ωε3))+Cε3‖b‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖m‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖b‖Lp(0,T;Lq(Ω∖Ωε3))⩽C‖b‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖m‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖b‖Lp(0,T;W1,q(Ω∖Ωε3))+C‖b‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖m‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖∇b‖Lp(0,T;Lq(Ω∖Ω2ε3)), |
and
lim supε1,ε→0lim supτ→0|Lbdr5|=lim supε1,ε→0lim supτ→0|1ε3∫tτ∫Ωε1∖Ωε1+ε3bε×(u×b)εn(x)dxds|=lim supε1,ε→0lim supτ→0|1ε3∫tτ∫Ωε1∖Ωε1+ε3(bε×[(u×b)ε−uε×bε]+bε×uε×bε)n(x)dxds|⩽Cε3‖bε‖L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖(u×b)ε−uε×bε‖L2pp+1(0,T;L2qq+1(Ω∖Ωε3))+Cε3‖b‖2L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖u‖Lp(0,T;Lq(Ω∖Ωε3))⩽C‖b‖2L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖u‖Lp(0,T;W1,q(Ω∖Ωε3))+C‖b‖2L2pp−1(0,T;L2qq−1(Ω∖Ωε3))‖∇u‖Lp(0,T;Lq(Ω∖Ω2ε3)). |
Under the assumption (1.13), by letting ε3→0, we obtain
lim supε3→0lim supε1,ε→0lim supτ→0|Lbdr45|=0,lim supε3→0lim supε1,ε→0lim supτ→0|Lbdr5|=0. |
Then, we collect all the above estimates F1, H3, L41, L43 and put them into the right side of equation (3.5) to conclude
lim supε3→0lim supε1,ε→0lim supτ→0|1ε3∫ε1+ε3ε1∫tτ∫Ωε2∂t(12|(ρu)ε|2ρε+12|bε|2)dxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2μ|∇uε|2dxdsdε2+1ε3∫ε1+ε3ε1∫tτ∫Ωε2|∇bε|2dxdsdε2|=0. |
Using the weak continuity of ρ,ρu in (1.10) and (1.11) and limits
lim supε3→0lim supε1,ε→0lim supτ→0|1ε3∫ε1+ε3ε1∫tτ∫Ωε2μ|∇uε|2dxdsdε2−∫t0∫Ωμ|∇u|2dxds|=0, |
lim supε3→0lim supε1,ε→0lim supτ→0|1ε3∫ε1+ε3ε1∫tτ∫Ωε2|∇bε|2dxdsdε2−∫t0∫Ω|∇b|2dxds|=0, |
and
lim supε3→0lim supε1,ε→0lim supτ→0|1ε3∫ε1+ε3ε1∫tτ∫Ωε212∂t|bε|2dxdsdε2−∫t0∫Ω12∂t|b|2dxds|=0, |
we finish the proof of Theorem 1.1.
In what follows, we will prove Corollary 1.1 based on Theorem 1.1, where n=3.
Proof of Corollary 1.1. First, we prove the first case of (1.15). The basic regularity of weak solutions gives u,b∈L∞(0,T;L2(Ω))∩L2(0,T;H1(Ω)). Choosing p=q=2 in (1.13), we know from Theorem 1.1 that the conditions u,b∈L4(0,T;L4(Ω)) and ∇×b∈L4(0,T;L4(Ω)) could guarantee the energy equality (1.8). Thus, to prove the first case of (1.15), it suffices to prove that u,b∈Ls(0,T;Lt(Ω)) with 2s+2t=1,t⩾4 could yield u,b∈L4(0,T;L4(Ω)). To this end, with the help of the Gagliardo-Nirenberg inequality, we have
‖u‖L4(0,T;L4(Ω))⩽C‖u‖t−42t−4L∞(0,T;L2(Ω))‖u‖t2t−4Ls(0,T;Lt(Ω))⩽C,‖b‖L4(0,T;L4(Ω))⩽C‖b‖t−42t−4L∞(0,T;L2(Ω))‖b‖t2t−4Ls(0,T;Lt(Ω))⩽C, |
which finishes the proof of the first case of (1.15).
Next, we consider the second case of (1.15) with 1s+3t=1,3<t<4. Using the Gagliardo-Nirenberg inequality, we deduce
‖u‖L4(0,T;L4(Ω))⩽C‖u‖3(4−t)2(6−t)L2(0,T;L6(Ω))‖u‖t2(6−t)Ls(0,T;Lt(Ω))⩽C(‖∇u‖L2(0,T;L2(Ω))+‖u‖L∞(0,T;L2(Ω)))3(4−t)2(6−t)‖u‖t2(6−t)Ls(0,T;Lt(Ω))⩽C,‖b‖L4(0,T;L4(Ω))⩽C‖b‖3(4−t)2(6−t)L2(0,T;L6(Ω))‖b‖t2(6−t)Ls(0,T;Lt(Ω))⩽C(‖∇b‖L2(0,T;L2(Ω))+‖b‖L∞(0,T;L2(Ω)))3(4−t)2(6−t)‖b‖t2(6−t)Ls(0,T;Lt(Ω))⩽C. |
Thus, by Theorem 1.1, we get that (1.15) could ensure the energy equality (1.8).
In what follows, we give the proof of the first case of (1.16). According to Theorem 1.1, for 1<p,q⩽3, one knows that the conditions ∇u,∇b∈Lp(0,T;Lq(Ω)) and u,b∈L2pp−1(0,T;L2qq−1(Ω)) can ensure that energy equality (1.8) is valid. Therefore, to prove the first case of (1.16), we need to show that the conditions ∇u,∇b∈Lp(0,T;Lq(Ω)) can yield u,b∈L2pp−1(0,T;L2qq−1(Ω)). To this end, for 95⩽q⩽3, by virtue of the Gagliardo-Nirenberg inequality, we know that
‖u‖L2qq−1(Ω)⩽C‖u‖5q−95q−6L2(Ω)‖∇u‖35q−6Lq(Ω),‖b‖L2qq−1(Ω)⩽C‖b‖5q−95q−6L2(Ω)‖∇b‖35q−6Lq(Ω). |
Furthermore, in view of 1p+65q=1, we deduce that
‖u‖L2pp−1(0,T;L2qq−1(Ω))⩽C‖u‖5q−95q−6L∞(0,T;L2(Ω))‖∇u‖35q−6Lp(0,T;Lq(Ω))⩽C,‖b‖L2pp−1(0,T;L2qq−1(Ω))⩽C‖b‖5q−95q−6L∞(0,T;L2(Ω))‖∇b‖35q−6Lp(0,T;Lq(Ω))⩽C. |
Then, we complete the proof of the first case of (1.16).
Next, we treat the remaining case of (1.16). For 32<q<95, it follows from the Gagliardo-Nirenberg inequality that
‖u‖L2qq−1(Ω)⩽C‖u‖9−5q6−3qL6(Ω)‖∇u‖2q−36−3qLq(Ω),‖b‖L2qq−1(Ω)⩽C‖b‖9−5q6−3qL6(Ω)‖∇b‖2q−36−3qLq(Ω). |
Thanks to 1p+3q=2, we further infer that
‖u‖L2pp−1(0,T;L2qq−1(Ω))⩽C‖u‖9−5q6−3qL2(0,T;L6(Ω))‖∇u‖2q−36−3qLp(0,T;Lq(Ω))⩽C,‖b‖L2pp−1(0,T;L2qq−1(Ω))⩽C‖b‖9−5q6−3qL2(0,T;L6(Ω))‖∇b‖2q−36−3qLp(0,T;Lq(Ω))⩽C. |
Then, from Theorem 1.1, we know that (1.16) could guarantee the energy equality (1.8), and the proof of Corollary 1.1 is finished.
This paper is dedicated to the energy equality of nonhomogeneous incompressible Hall-MHD equations in a bounded domain Ω⊂Rn (n⩾2). Through the special structure of the nonlinear terms, and using the coarea formula, we get some types of regularity conditions to guarantee that the energy equality is valid. It is worth noting that among them are the regularity conditions concerning ∇u and ∇b, rather than u and b.
This work was sponsored by the NNSF of China (No. 11871305). The authors thank the referees for careful reading and valuable suggestions.
The authors declare there are no conflicts of interest.
[1] |
M. J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. Trans. R. Soc. Lond. Ser. A., 252 (1960), 397–430. https://doi.org/10.1098/rsta.1960.0010 doi: 10.1098/rsta.1960.0010
![]() |
[2] |
M. Arichetogaray, P. Degond, Y. Frouvelle, J. G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models, 4 (2011), 901–918. http://dx.doi.org/10.3934/krm.2011.4.901 doi: 10.3934/krm.2011.4.901
![]() |
[3] |
D. Chae, R. Wan, J. Wu, Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion, J. Math. Fluid Mech., 17 (2015), 627–638. https://doi.org/10.1007/s00021-015-0222-9 doi: 10.1007/s00021-015-0222-9
![]() |
[4] |
R. Wan, Y. Zhou, Global well-posedness, BKM blow-up criteria and zero h limit for the 3D incompressible Hall-MHD equations, J. Differ. Equations, 267 (2019), 3724–3747. https://doi.org/10.1016/j.jde.2019.04.020 doi: 10.1016/j.jde.2019.04.020
![]() |
[5] |
Z. Ye, Well-posedness results for the 3D incompressible Hall-MHD equations, J. Differ. Equations, 321 (2022), 130–216. https://doi.org/10.1016/j.jde.2022.03.012 doi: 10.1016/j.jde.2022.03.012
![]() |
[6] |
J. Fan, B. Ahmad, T. Hadyat, Y. Zhou, On blow-up criteria for a new Hall-MHD system, Appl. Math. Comput., 274 (2016), 20–24. https://doi.org/10.1016/j.amc.2015.10.073 doi: 10.1016/j.amc.2015.10.073
![]() |
[7] |
D. Chae, M. Schonbek, On the temporal decay for the Hall-magneto hydrodynamic equations, J. Differ. Equations, 255 (2013), 3971–3982. https://doi.org/10.1016/j.jde.2013.07.059 doi: 10.1016/j.jde.2013.07.059
![]() |
[8] |
M. Dai, H. Liu, Long time behavior of solutions to the 3D Hall-magnetohydrodynamics system with one diffusion, J. Differ. Equations, 266 (2019), 7658–7677. https://doi.org/10.1016/j.jde.2018.12.008 doi: 10.1016/j.jde.2018.12.008
![]() |
[9] |
S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270 (2016), 2168–2187. https://doi.org/10.1016/j.jfa.2016.01.021 doi: 10.1016/j.jfa.2016.01.021
![]() |
[10] |
X. Zhai, Global wellposedness and large time behavior of solutions to the Hall-magnetohydrodynamics equations, Z. Anal. Anwend., 39 (2020), 395–419. https://doi.org/10.4171/zaa/1665 doi: 10.4171/zaa/1665
![]() |
[11] |
Y. Zhou, Q. Bie, Q. Wang, Z. Yao, On Liouville type theorems for three-dimensional stationary MHD and Hall-MHD equations, Sci. Sin. Math., 52 (2022), 1–10. https://doi.org/10.1360/SSM-2022-0059 doi: 10.1360/SSM-2022-0059
![]() |
[12] |
D. Chae, P. Degond, J. G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 31 (2014), 555–565. https://doi.org/10.1016/j.anihpc.2013.04.006 doi: 10.1016/j.anihpc.2013.04.006
![]() |
[13] |
D. Chae, S. Weng, Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations, Discrete Contin. Dyn. Syst., 36 (2016), 5267–5285. https://doi.org/10.48550/arXiv.1512.03491 doi: 10.48550/arXiv.1512.03491
![]() |
[14] |
Z. Zhang, X. Yang, S. Qiu, Remarks on Liouville type result for the 3D Hall-MHD system, J. Partial Differ. Equations, 3 (2015), 286–290. http://dx.doi.org/10.4208/jpde.v28.n3.7 doi: 10.4208/jpde.v28.n3.7
![]() |
[15] |
L. Kang, X. Deng, Q. Bie, Energy conservation for the nonhomogeneous incompressible Hall-MHD equations, J. Math. Phys., 62 (2021), 031506. https://doi.org/10.1063/5.0042696 doi: 10.1063/5.0042696
![]() |
[16] |
L. Kang, X. Deng, Y. Zhou, Energy conservation for the nonhomogeneous incompressible Hall-MHD equations in a bounded domain, Results Appl. Math., 12 (2021), 100178. https://doi.org/10.1016/j.rinam.2021.100178 doi: 10.1016/j.rinam.2021.100178
![]() |
[17] |
Q. Bie, L. Kang, Q. Wang, Z. Yao, Regularity and energy conservation for the compressible MHD equations (in Chinese), Sci. Sin. Math., 52 (2022), 741–756. https://doi.org/10.1360/SSM-2020-0339 doi: 10.1360/SSM-2020-0339
![]() |
[18] |
Y. Wang, B. J. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differ. Equations, 268 (2020), 4079–4101. https://doi.org/10.1016/j.jde.2019.10.045 doi: 10.1016/j.jde.2019.10.045
![]() |
[19] |
X. Wang, S. Liu, Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain, Nonlinear Anal. RWA, 62 (2021), 103359. https://doi.org/10.1016/j.nonrwa.2021.103359 doi: 10.1016/j.nonrwa.2021.103359
![]() |
[20] |
T. Wang, X. Zhao, Y. Chen, M. Zhang, Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions, J. Math. Anal. Appl., 480 (2019), 123373. https://doi.org/10.1016/j.jmaa.2019.07.063 doi: 10.1016/j.jmaa.2019.07.063
![]() |
[21] | J. L. Lions, Sur la régularité et l'unicité des solutions turbulentes des équations de Navier Stokes, Rend. Semin. Mat. Univ. Padova, 30 (1960), 16–23. |
[22] |
M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948–954. https://doi.org/10.1137/0505092 doi: 10.1137/0505092
![]() |
[23] |
H. B. da Veiga, J. Yang, On the Shinbrot's criteria for energy equality to Newtonian fluids: a simplified proof, and an extension of the range of application, Nonlinear Anal., 196 (2020), 111809. https://doi.org/10.1016/j.na.2020.111809 doi: 10.1016/j.na.2020.111809
![]() |
[24] | C. Yu, A new proof to the energy conservation for the Navier-Stokes equations, preprint, arXiv: 1604.05697. |
[25] | C. Yu, The energy equality for the Navier-Stokes equations in bounded domains, preprint, arXiv: 1802.07661. |
[26] |
Q. Nguyen, P. Nguyen, B. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206–4231. https://doi.org/10.1088/1361-6544/ab28ae doi: 10.1088/1361-6544/ab28ae
![]() |
[27] |
C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073–1087. https://doi.org/10.1007/s00205-017-1121-4 doi: 10.1007/s00205-017-1121-4
![]() |
[28] |
R. M. Chen, Z. L. Liang, D. H. Wang, R. Z. Xu, Energy equality in compressible fluids with physical boundaries, SIAM J. Math. Anal., 52 (2020), 1363–1385. https://doi.org/10.1137/19M1287213 doi: 10.1137/19M1287213
![]() |
[29] |
L. C. Berselli, E. Chiodaroli, On the energy equality for the 3D Navier-Stokes equations, Nonlinear Anal., 192 (2020), 111704. https://doi.org/10.1016/j.na.2019.111704 doi: 10.1016/j.na.2019.111704
![]() |
[30] |
Z. Liang, Regularity criterion on the energy conservation for the compressible Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A., 151 (2021), 1954–1971. https://doi.org/10.1017/prm.2020.87 doi: 10.1017/prm.2020.87
![]() |
[31] | Y. Wang, Y. Ye, Energy conservation via a combination of velocity and its gradient in the Navier-Stokes system, preprint, arXiv: 2106.01233. |