Research article

An analysis of two degenerate double-Hopf bifurcations


  • Received: 28 October 2021 Revised: 18 December 2021 Accepted: 04 January 2022 Published: 13 January 2022
  • The generic double-Hopf bifurcation is presented in detail in literature in textbooks like references. In this paper we complete the study of the double-Hopf bifurcation with two degenerate (or nongeneric) cases. In each case one of the generic conditions is not satisfied. The normal form and the corresponding bifurcation diagrams in each case are obtained. New possibilities of behavior which do not appear in the generic case were found.

    Citation: Gheorghe Moza, Mihaela Sterpu, Carmen Rocşoreanu. An analysis of two degenerate double-Hopf bifurcations[J]. Electronic Research Archive, 2022, 30(1): 382-403. doi: 10.3934/era.2022020

    Related Papers:

  • The generic double-Hopf bifurcation is presented in detail in literature in textbooks like references. In this paper we complete the study of the double-Hopf bifurcation with two degenerate (or nongeneric) cases. In each case one of the generic conditions is not satisfied. The normal form and the corresponding bifurcation diagrams in each case are obtained. New possibilities of behavior which do not appear in the generic case were found.



    加载中


    [1] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third Edition, Springer–Verlag, New York, 2004. https://doi.org/10.1007/978-1-4757-3978-7
    [2] S. N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge and New York, 1994. https://doi.org/10.1017/CBO9780511665639
    [3] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2
    [4] G. Revel, D. M. Alonso, J. L. Moiola, A degenerate 2:3 resonant Hopf–Hopf bifurcation as organizing center of the dynamics: numerical semiglobal results, SIAM J. Appl. Dyn. Syst., 14 (2015), 1130–1164. https://doi.org/10.1137/140968197 doi: 10.1137/140968197
    [5] N. K. Gavrilov, Bifurcations of an equilibrium with one zero and a pair of pure imaginary roots, Methods Qual. Theory Differ. Equations, 1987.
    [6] N. K. Gavrilov, Bifurcations of an equilibrium with two pairs of pure imaginary roots, Methods Qual. Theory Differ. Equations, (1980), 17–30,
    [7] J. Keener, Infinite period bifurcation and global bifurcation branches, SIAM J. Appl. Math., 41 (1981), 127–144. https://doi.org/10.1137/0141010 doi: 10.1137/0141010
    [8] W. Langford, Periodic and steady mode interactions lead to tori, SIAM J. Appl. Math., 37 (1979), 22–48. https://doi.org/10.1137/0137003 doi: 10.1137/0137003
    [9] T. G. Molnar, Z. Dombovari, T. Insperger, G. Stepan, On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction, Proc. Roy. Society A, 473 (2017), 1–20. https://doi.org/10.1098/rspa.2017.0502 doi: 10.1098/rspa.2017.0502
    [10] S. Ruan, Nonlinear dynamics in tumor-immune system interaction models with delays, Discrete Cont. Dyn. Syst. B, 26 (2021), 541–602. https://doi.org/10.3934/dcdsb.2020282 doi: 10.3934/dcdsb.2020282
    [11] H. Xu, G. Wen, Q. Qin, H. Zhou, New explicit critical criterion of Hopf–Hopf bifurcation in a general discrete time system, Commun. Nonlinear Sci. Num. Simul., 18 (2013), 2120–2128. https://doi.org/10.1016/j.cnsns.2012.12.019 doi: 10.1016/j.cnsns.2012.12.019
    [12] Y. Zhou, Double Hopf bifurcation of a simply supported rectangular thin plate with parametrically and externally excitations, J. Space Explor., 6 (2017), 1–16.
    [13] L. Perko, Differential Equations and Dynamical Systems, third edition, Springer Verlag, New York, 2001.
    [14] J. Sotomayor, Generic bifurcations of dynamic systems, in Dynamical Systems (ed. M. M. Peixoto), Academic Press, 1973. https://doi.org/10.1016/B978-0-12-550350-1.50047-3
    [15] H. W. Broer, G. Vegter, Subordinate Silnikov bifurcations near some singularities of vector fields having low codimension, Ergod. Theor. Dyn. Syst., 4 (1984), 509–525. https://doi.org/10.1017/S0143385700002613 doi: 10.1017/S0143385700002613
    [16] H. W. Broer, S. J. Holtman, G. Vegter, R. Vitolo, Geometry and dynamics of mildly degenerate Hopf–Neimarck–Sacker families near resonance, Nonlinearity, 22 (2009). https://doi.org/10.1088/0951-7715/22/9/007 doi: 10.1088/0951-7715/22/9/007
    [17] V. Kirk, Breaking of symmetry in the saddle-node Hopf bifurcation, Physics Letters A, 154 (1991), 243–248. https://doi.org/10.1016/0375-9601(91)90814-O doi: 10.1016/0375-9601(91)90814-O
    [18] V. Kirk, Merging of resonance tongues, Physica D, 66 (1993), 267–28l. https://doi.org/10.1016/0167-2789(93)90069-D doi: 10.1016/0167-2789(93)90069-D
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1725) PDF downloads(215) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog