Sugarcane leaves are the main residue constitute approximately 14% of the total weight of the remaining sugarcane after harvesting. An effective method for processing sugarcane leaves residues is needed at low cost without causing any environmental problem. This research aims to disclose the effect of sugarcane leaves densification method applied prior to pyrolysis process in a pilot scale reactor. To evaluate the process and its product, the experiments were carried out into two types: (i) pyrolysis of sugarcane leaves without densification at 320 ℃ with a variation of pyrolysis time for 100,120, and 130 minutes and (ii) pyrolysis of densified sugarcane leaves with the variation of pyrolysis temperature 320 ℃ and 420 ℃. The investigated conditions showed that the effect of sugarcane leaves densification prolong the pyrolysis time up to 240 minutes at a pyrolysis temperature of 320 ℃, and increased the yield of biochar and bio-oil products up to 41% and 38%, respectively. However, in term of the physical properties of biochar products, the fixed carbon content decreased by 7% when the sugarcane leaves were compacted. While other parameters found no significant difference in pyrolysis at 320 ℃, the effect of sugarcane leaves densification is very beneficial especially when the pyrolysis was performed at 420 ℃.
Citation: Adi Setiawan, Ananda Fringki, M. Iqbal Hifzi, Shafira Riskina, Jalaluddin, Eddy Kurniawan, Burhanuddin. The effect of feedstock densification on the process and product properties of sugarcane leaves pyrolysis[J]. AIMS Environmental Science, 2024, 11(6): 866-882. doi: 10.3934/environsci.2024043
Sugarcane leaves are the main residue constitute approximately 14% of the total weight of the remaining sugarcane after harvesting. An effective method for processing sugarcane leaves residues is needed at low cost without causing any environmental problem. This research aims to disclose the effect of sugarcane leaves densification method applied prior to pyrolysis process in a pilot scale reactor. To evaluate the process and its product, the experiments were carried out into two types: (i) pyrolysis of sugarcane leaves without densification at 320 ℃ with a variation of pyrolysis time for 100,120, and 130 minutes and (ii) pyrolysis of densified sugarcane leaves with the variation of pyrolysis temperature 320 ℃ and 420 ℃. The investigated conditions showed that the effect of sugarcane leaves densification prolong the pyrolysis time up to 240 minutes at a pyrolysis temperature of 320 ℃, and increased the yield of biochar and bio-oil products up to 41% and 38%, respectively. However, in term of the physical properties of biochar products, the fixed carbon content decreased by 7% when the sugarcane leaves were compacted. While other parameters found no significant difference in pyrolysis at 320 ℃, the effect of sugarcane leaves densification is very beneficial especially when the pyrolysis was performed at 420 ℃.
[1] | Purwanto SK, Sinaga O (2021) Exploring the relationship between fossil fuel energy consumption, renewable energy consumption and human capital index: A study from Thailand. Int J Energy Econ Policy 11: 106–113. https://doi.org/10.32479/ijeep.10910 doi: 10.32479/ijeep.10910 |
[2] | Ashokkumar V, Venkatkarthick R, Jayashree S, et al. (2022) Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. Bioresour Technol 344: 126195. https://doi.org/10.1016/j.biortech.2021.126195 doi: 10.1016/j.biortech.2021.126195 |
[3] | Algayyim SJM, Yusaf T, Hamza NH, et al. (2022) Sugarcane Biomass as a Source of Biofuel for Internal Combustion Engines (Ethanol and Acetone-Butanol-Ethanol): A Review of Economic Challenges. Energies 15. https://doi.org/10.3390/en15228644 doi: 10.3390/en15228644 |
[4] | Ruslan K, Prasetyo OR (2021) Policy Paper No. 42 Plantation Crop Productivity: Coffee, Sugarcane, and Cocoa. Cent Indones Policy Stud. https://doi.org/10.35497/349327 doi: 10.35497/349327 |
[5] | Nugraha MG, Mozasurya ED, Hidayat M, et al. (2023) Evaluation of combustion characteristics in biomass residues open burning. Mater Today Proc 87: 45–50. https://doi.org/10.1016/j.matpr.2023.02.098 doi: 10.1016/j.matpr.2023.02.098 |
[6] | Choi H, Kim YT, Tsang YF, et al. (2023) Integration of thermochemical conversion processes for waste-to-energy: A review. Korean J Chem Eng 40: 1815–1821. https://doi.org/10.1007/s11814-023-1494-z doi: 10.1007/s11814-023-1494-z |
[7] | Yaashikaa PR, Kumar PS, Varjani S, et al. (2020) A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Reports 28: e00570. https://doi.org/10.1016/j.btre.2020.e00570 doi: 10.1016/j.btre.2020.e00570 |
[8] | Charusiri W, Vitidsant T (2018) Biofuel production via the pyrolysis of sugarcane (Saccharum officinarum L.) leaves: Characterization of the optimal conditions. Sustain Chem Pharm 10: 71–78. https://doi.org/10.1016/j.scp.2018.09.005 doi: 10.1016/j.scp.2018.09.005 |
[9] | Conag AT, Villahermosa JER, Cabatingan LK, et al. (2018) Energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere. Energy Sustain Dev 42. https://doi.org/10.1016/j.esd.2017.11.004 doi: 10.1016/j.esd.2017.11.004 |
[10] | Toscano Miranda N, Lopes Motta I, Maciel Filho R, et al. (2021) Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renew Sustain Energy Rev 149: 111394. https://doi.org/10.1016/j.rser.2021.111394 doi: 10.1016/j.rser.2021.111394 |
[11] | Alchalil, Setiawan A, Juwaini, et al. (2021) Effect of Densification Pressure on Physical and Combustion Properties of Binderless Briquettes Made from Rice-Husk and Coffee-Pulp. Lect Notes Mech Eng 1–8. https://doi.org/10.1007/978-981-16-0736-3_1 doi: 10.1007/978-981-16-0736-3_1 |
[12] | Rifanida, Riskina S, Setiawan A, et al. (2023) The Effect of Varying Torrefaction Temperature on the Physical and Mechanical Properties of Briquettes Made from King Grass. 21: 1–5. |
[13] | Aryati T, Williansyah A, Zulnazri, et al. (2021) Slow Pyrolysis of Areca-Nut Fibres in a-Pilot Scale Batch Reactor, Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering, 263–270. https://doi.org/10.1007/978-981-16-0736-3_26 |
[14] | Standar Nasional Indonesia (1995) Arang Aktif Teknis SNI 06-3730-1995. |
[15] | Sun J, He F, Pan Y, et al. (2017) Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agric Scand Sect B Soil Plant Sci 67: 12–22. https://doi.org/10.1080/09064710.2016.1214745 doi: 10.1080/09064710.2016.1214745 |
[16] | Kakom SM, Abdelmonem NM, Ismail IM, et al. (2023) Activated Carbon from Sugarcane Bagasse Pyrolysis for Heavy Metals Adsorption. Sugar Tech 25: 619–629. https://doi.org/10.1007/s12355-022-01214-3 doi: 10.1007/s12355-022-01214-3 |
[17] | Hongthong S, Sangsida W, Wongcharee S, et al. (2024) Enhanced Biochar Production via Co-Pyrolysis of Biomass Residual with Plastic Waste after Recycling Process. Int J Chem Eng 2024: 1–17. https://doi.org/10.1155/2024/1176275 doi: 10.1155/2024/1176275 |
[18] | Qazi Sohaib AM, Younas M (2017) Fast pyrolysis of sugarcane bagasse: Effect of pyrolysis conditions on final product distribution and properties. Energy Sources, Part A Recover Util Environ Eff 39: 184–190. https://doi.org/10.1080/15567036.2016.1212292 doi: 10.1080/15567036.2016.1212292 |
[19] | Pecha MB, Garcia-Perez M (2020) Chapter 29 - Pyrolysis of lignocellulosic biomass: oil, char, and gas, In: Dahiya A (Ed.), Bioenergy (Second Edition), Academic Press, 581–619. https://doi.org/10.1016/B978-0-12-815497-7.00029-4 |
[20] | Kawamoto H (2017) Lignin pyrolysis reactions. J Wood Sci 63: 117–132. https://doi.org/10.1007/s10086-016-1606-z doi: 10.1007/s10086-016-1606-z |
[21] | Zhao C, Jiang E, Chen A (2017) Volatile production from pyrolysis of cellulose, hemicellulose and lignin. J Energy Inst 90: 902–913. https://doi.org/10.1016/j.joei.2016.08.004 doi: 10.1016/j.joei.2016.08.004 |
[22] | Zhao L, Sun Z-F, Pan X-W, et al. (2023) Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. Water Res X 18: 100167. https://doi.org/10.1016/j.wroa.2023.100167 doi: 10.1016/j.wroa.2023.100167 |
[23] | Trippe KM, Griffith SM, Banowetz GM, et al. (2015) Changes in Soil Chemistry following Wood and Grass Biochar Amendments to an Acidic Agricultural Production Soil. Agron J 107: 1440–1446. https://doi.org/10.2134/agronj14.0593 doi: 10.2134/agronj14.0593 |
[24] | Al-Rumaihi A, Shahbaz M, Mckay G, et al. (2022) A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew Sustain Energy Rev 167: 112715. https://doi.org/10.1016/j.rser.2022.112715 doi: 10.1016/j.rser.2022.112715 |
[25] | Yang H, Jiang J, Zhang B, et al. (2021) Experimental study on light volatile products from thermal decomposition of lignin monomer model compounds: effect of temperature, residence time and methoxyl group. RSC Adv 11: 37067–37082. https://doi.org/10.1039/D1RA06743E doi: 10.1039/D1RA06743E |
[26] | Herrera K, Morales LF, Tarazona NA, et al. (2022) Use of Biochar from Rice Husk Pyrolysis: Part A: Recovery as an Adsorbent in the Removal of Emerging Compounds. ACS Omega 7: 7625–7637. https://doi.org/10.1021/acsomega.1c06147 doi: 10.1021/acsomega.1c06147 |
[27] | Reyes L, Abdelouahed L, Mohabeer C, et al. (2021) Energetic and exergetic study of the pyrolysis of lignocellulosic biomasses, cellulose, hemicellulose and lignin. Energy Convers Manag 244: 114459. https://doi.org/10.1016/j.enconman.2021.114459 doi: 10.1016/j.enconman.2021.114459 |
[28] | Vilas-Boas ACM, Tarelho LAC, Oliveira HSM, et al. (2024) Valorisation of residual biomass by pyrolysis: influence of process conditions on products. Sustain Energy Fuels 8: 379–396. https://doi.org/10.1039/D3SE01216F doi: 10.1039/D3SE01216F |
[29] | Maj G (2018) Emission factors and energy properties of agro and forest biomass in aspect of sustainability of energy sector. Energies 11. https://doi.org/10.3390/en11061516 doi: 10.3390/en11061516 |
[30] | Yang X, Kang K, Qiu L, et al. (2020) Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches. Renew Energy 146: 1691–1699. https://doi.org/10.1016/j.renene.2019.07.148 doi: 10.1016/j.renene.2019.07.148 |
[31] | Conesa JA, Sánchez NE, Garrido MA, et al. (2016) Semivolatile and Volatile Compound Evolution during Pyrolysis and Combustion of Colombian Coffee Husk. Energy and Fuels 30: 7827–7833. https://doi.org/10.1021/acs.energyfuels.6b00791 doi: 10.1021/acs.energyfuels.6b00791 |
[32] | Gruss I, Twardowski JP, Latawiec A, et al. (2019) Risk assessment of low-temperature biochar used as soil amendment on soil mesofauna. Environ Sci Pollut Res 26: 18230–18239. https://doi.org/10.1007/s11356-019-05153-7 doi: 10.1007/s11356-019-05153-7 |
[33] | Nurazzi NM, Asyraf MRM, Rayung M, et al. (2021) Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers (Basel) 13. https://doi.org/10.3390/polym13162710 doi: 10.3390/polym13162710 |
[34] | Mulabagal V, Baah D, Egiebor N, et al. (2020) Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, and CO2 Utilization. |
[35] | Adeniyi AG, Odetoye TE, Titiloye J, et al. (2019) A Thermodynamic Study of Rice Husk (Oryza Sativa) Pyrolysis. Eur J Sustain Dev Res 3: 1–10. https://doi.org/10.29333/ejosdr/5830 doi: 10.29333/ejosdr/5830 |
[36] | Bhavsar PA, Jagadale MH, Khandetod YP, et al. (2018) Proximate Analysis of Selected Non Woody Biomass. Int J Curr Microbiol Appl Sci 7: 2846–2849. https://doi.org/10.20546/ijcmas.2018.709.353 doi: 10.20546/ijcmas.2018.709.353 |
[37] | Zama EF, Zhu Y-G, Reid BJ, et al. (2017) The role of biochar properties in influencing the sorption and desorption of Pb(Ⅱ), Cd(Ⅱ) and As(Ⅲ) in aqueous solution. J Clean Prod 148: 127–136. https://doi.org/10.1016/j.jclepro.2017.01.125 doi: 10.1016/j.jclepro.2017.01.125 |
[38] | Das P, Ganesh A, Wangikar P (2004) Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass and Bioenergy 27: 445–457. https://doi.org/10.1016/j.biombioe.2004.04.002 doi: 10.1016/j.biombioe.2004.04.002 |
[39] | Erdogan E, Atila B, Mumme J, et al. (2015) Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour Technol 196: 35–42. https://doi.org/10.1016/j.biortech.2015.06.115 doi: 10.1016/j.biortech.2015.06.115 |
[40] | Rä isä nen U, Pitkä nen I, Halttunen H, et al. (2003) Formation of the main degradation compounds from arabinose, xylose, mannose and arabinitol during pyrolysis. J Therm Anal Calorim 72: 481–488. https://doi.org/10.1023/A:1024557011975 doi: 10.1023/A:1024557011975 |
[41] | Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrol 76: 230–237. https://doi.org/10.1016/j.jaap.2005.11.007 doi: 10.1016/j.jaap.2005.11.007 |
[42] | Hu X, Gholizadeh M (2019) Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. J Energy Chem 39: 109–143. https://doi.org/10.1016/j.jechem.2019.01.024 doi: 10.1016/j.jechem.2019.01.024 |
[43] | Bhavaniramya S, Vishnupriya S, Al-Aboody MS, et al. (2019) Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol 2: 49–55. https://doi.org/10.1016/j.gaost.2019.03.001 doi: 10.1016/j.gaost.2019.03.001 |