Citation: Sara Pourjafar, Jasmine Kreft, Honza Bilek, Evguenii Kozliak, Wayne Seames. Exploring large pore size alumina and silica-alumina based catalysts for decomposition of lignin[J]. AIMS Energy, 2018, 6(6): 993-1008. doi: 10.3934/energy.2018.6.993
[1] | Constant S, Wienk HLJ, Frissen AE, et al. (2016) New insights into the structure and composition of technical lignins: A comparative characterisation study. Green Chem 18: 2651–2665. doi: 10.1039/C5GC03043A |
[2] | Crestini C, Lange H, Sette M, et al. (2017) On the structure of softwood kraft lignin. Green Chem 19: 4104–4121. doi: 10.1039/C7GC01812F |
[3] | Deuss PJ, Lancefield CS, Narani A, et al. (2017) Phenolic acetals from lignins of varying compositions via iron(III) triflate catalyzed depolymerization. Green Chem 19: 2774–2782. doi: 10.1039/C7GC00195A |
[4] | Lancefield CS, Wienk HLJ, Boelens R, et al. (2018) Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chem Sci 9: 6348–6360. doi: 10.1039/C8SC02000K |
[5] | Hita I, Heeres HJ, Deuss PJ (2018) Insight into structure-reactivity relationships for the iron-catalyzed hydrotreatment of technical lignins. Bioresour Technol 267: 93–101. doi: 10.1016/j.biortech.2018.07.028 |
[6] | Xu C, Arancon R, Labidi J, et al. (2014) Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chem Soc Rev 43: 7485–7500. doi: 10.1039/C4CS00235K |
[7] | Asina F, Brzonova I, Kozliak E, et al. (2017) Microbial treatment of industrial lignin: Successes, problems and challenges. Renew Sust Energ Rev 77: 1179–1205. doi: 10.1016/j.rser.2017.03.098 |
[8] | Kozliak E, Kubatova A, Artemyeva A, et al. (2016) Thermal liquefaction of lignin to aromatics: Efficiency, selectivity, and product analysis. ACS Sust Chem Eng 4: 5106–5122. doi: 10.1021/acssuschemeng.6b01046 |
[9] | Chang H, Allan G (1971) Oxidation, Lignins: Occurrence, formation and reactions. Wiley, 433–485. |
[10] | Brebu M, Vasile C (2010) Thermal degradation of lignin-a review. Cellul Chem Technol 44: 353. |
[11] | Jae J, Tompsett G, Foster A, et al. (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279: 257–268. doi: 10.1016/j.jcat.2011.01.019 |
[12] | Xie Z, Liu Z, Wang Y, et al. (2010) An overview of recent development in composite catalysts from porous materials for various reactions and processes. Int J Mol Sci 11: 2152–2187. doi: 10.3390/ijms11052152 |
[13] | Numan-Al-Mobin A, Voeller A, Bilek H, et al. (2016) Selective synthesis of phenolic compounds from alkali lignin in a mixture of sub-and supercritical fluids: Catalysis by CO2. Energ Fuel 30: 2137–2143. doi: 10.1021/acs.energyfuels.5b02136 |
[14] | Yoshikawa T, Yagi T, Shinohara S, et al. (2013) Production of phenols from lignin via depolymerization and catalytic cracking. Fuel Process Technol 108: 69–75. doi: 10.1016/j.fuproc.2012.05.003 |
[15] | Yu Y, Li X, Su L, et al. (2012) The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl Catal A 447–448: 115–123. |
[16] | Zheng Y, Chen D, Zhu X (2013) Aromatic hydrocarbon production by the online catalytic cracking of lignin fast pyrolysis vapors using Mo2N/γ-Al2O3. J Anal Appl Pyrol 104: 514–520. doi: 10.1016/j.jaap.2013.05.018 |
[17] | Li X, Su L, Wang Y, et al. (2012) Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front Environ Sci Eng 6: 295–303. doi: 10.1007/s11783-012-0410-2 |
[18] | Liguori L, Barth T (2011) Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water. J Anal Appl Pyrol 92: 477–484. doi: 10.1016/j.jaap.2011.09.004 |
[19] | Nguyen T, Maschietti M, Belkheiri T, et al. (2014) Catalytic depolymerisation and conversion of Kraft lignin into liquid products using near-critical water. J Supercrit Fluid 86: 67–75. doi: 10.1016/j.supflu.2013.11.022 |
[20] | Joffres B, Lorentz C, Vidalie M, et al. (2014) Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Appl Catal B 145: 167–176. doi: 10.1016/j.apcatb.2013.01.039 |
[21] | Oasmaa A, Johansson A (1993) Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst. Energ Fuel 7: 426–429. doi: 10.1021/ef00039a015 |
[22] | Yu Z, Li S, Wang Q, et al. (2011) Brønsted/lewis acid synergy in H–ZSM-5 and H–MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J Phys Chem C 115: 22320–22327. doi: 10.1021/jp203923z |
[23] | Ennaert T, Van Aelst J, Dijkmans J, et al. (2016) Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev 45: 584–611. doi: 10.1039/C5CS00859J |
[24] | Wua Q, Maa L, Longb J, et al. (2016) Depolymerization of organosolv lignin over silica-alumina catalysts. Chin J Chem Phys 29: 474–480. doi: 10.1063/1674-0068/29/cjcp1601017 |
[25] | Scherzer J, Gruia A (1996) Hydrocracking science and technology. CRC Press. |
[26] | Hensen E, Poduval D, Degirmenci V, et al. (2012) Acidity characterization of amorphous silica-alumina. J Phys Chem C 116: 21416–21429. doi: 10.1021/jp309182f |
[27] | Van Borm R, Aerts A, Reyniers M, et al. (2010) Catalytic cracking of 2, 2, 4-trimethylpentane on FAU, MFI, and bimodal porous materials: Influence of acid properties and pore topology. Ind Eng Chem Res 49: 6815–6823. doi: 10.1021/ie901708m |
[28] | Yu Y, Li X, Su L, et al. (2012) The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl Catal A 447–448: 115–123. |
[29] | Voeller K, Bilek H, Kreft J, et al. (2017) Thermal carbon analysis enabling comprehensive characterization of lignin and its degradation products. ACS Sust Chem Eng 5: 10334–10341. doi: 10.1021/acssuschemeng.7b02392 |
[30] | Pourjafar S (2017) An Investigation of the Thermal Degradation of Lignin. Doctoral dissertation, University of North Dakota, USA. |
[31] | Wua Q, Maa L, Longb J, et al. (2016) Depolymerization of organosolv lignin over silica-alumina catalysts. Chin J Chem Phys 29: 474–480. doi: 10.1063/1674-0068/29/cjcp1601017 |