Loading [Contrib]/a11y/accessibility-menu.js
Research article Topical Sections

Multi-objective optimal operation of smart reconfigurable distribution grids

  • Received: 29 December 2015 Accepted: 14 February 2016 Published: 23 February 2016
  • Reconfiguration is a valuable technique that can support the distribution grid from different aspects such as operation cost and loss reduction, reliability improvement, and voltage stability enhancement. An intelligent and efficient optimization framework, however, is required to reach the desired efficiency through the reconfiguration strategy. This paper proposes a new multi-objective optimization model to make use of the reconfiguration strategy for minimizing the power losses, improving the voltage profile, and enhancing the load balance in distribution grids. The proposed model employs the min-max fuzzy approach to find the most satisfying solution from a set of nondominated solutions in the problem space. Due to the high complexity and the discrete nature of the proposed model, a new optimization method based on harmony search (HS) algorithm is further proposed. Moreover, a new modification method is suggested to increase the harmony memory diversity in the improvisation stage and increase the convergence ability of the algorithm. The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus distribution system.

    Citation: Abdollah Kavousi-Fard, Amin Khodaei. Multi-objective optimal operation of smart reconfigurable distribution grids[J]. AIMS Energy, 2016, 4(2): 206-221. doi: 10.3934/energy.2016.2.206

    Related Papers:

    [1] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547
    [2] Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Morphogenesis of the tumor patterns. Mathematical Biosciences and Engineering, 2008, 5(2): 299-313. doi: 10.3934/mbe.2008.5.299
    [3] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [4] H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852
    [5] Rafael Martínez-Fonseca, Cruz Vargas-De-León, Ramón Reyes-Carreto, Flaviano Godínez-Jaimes . Bayesian analysis of the effect of exosomes in a mouse xenograft model of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2023, 20(11): 19504-19526. doi: 10.3934/mbe.2023864
    [6] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [7] Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
    [8] Marcelo E. de Oliveira, Luiz M. G. Neto . Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences and Engineering, 2016, 13(2): 333-341. doi: 10.3934/mbe.2015005
    [9] Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae . T model of growth and its application in systems of tumor-immunedynamics. Mathematical Biosciences and Engineering, 2013, 10(3): 925-938. doi: 10.3934/mbe.2013.10.925
    [10] Tuan Anh Phan, Jianjun Paul Tian . Basic stochastic model for tumor virotherapy. Mathematical Biosciences and Engineering, 2020, 17(4): 4271-4294. doi: 10.3934/mbe.2020236
  • Reconfiguration is a valuable technique that can support the distribution grid from different aspects such as operation cost and loss reduction, reliability improvement, and voltage stability enhancement. An intelligent and efficient optimization framework, however, is required to reach the desired efficiency through the reconfiguration strategy. This paper proposes a new multi-objective optimization model to make use of the reconfiguration strategy for minimizing the power losses, improving the voltage profile, and enhancing the load balance in distribution grids. The proposed model employs the min-max fuzzy approach to find the most satisfying solution from a set of nondominated solutions in the problem space. Due to the high complexity and the discrete nature of the proposed model, a new optimization method based on harmony search (HS) algorithm is further proposed. Moreover, a new modification method is suggested to increase the harmony memory diversity in the improvisation stage and increase the convergence ability of the algorithm. The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus distribution system.


    [1] Kavousi-Fard A, Rostami MA, Niknam T (2015) Reliability-Oriented Reconfiguration of Vehicle-to-Grid Networks. IEEE T Ind Inform 11: 682–691. doi: 10.1109/TII.2015.2423093
    [2] Kavousi-Fard A, Niknam T, Fotuhi-Firuzabad M (2015) Stochastic Reconfiguration and Optimal Coordination of V2G Plug-in Electric Vehicles Considering Correlated Wind Power Generation. IEEE T Sust Energ 6: 822–830. doi: 10.1109/TSTE.2015.2409814
    [3] Baziar A, Kavousi-Fard A (2014) An intelligent multi-objective stochastic framework to solve the distribution feeder reconfiguration considering uncertainty. J Intell Fuzzy Syst 26: 2215–2227.
    [4] Morton AB, Mareels IMY (2000) An efficient brute-force solution to the network reconfiguration problem. IEEE T Power Deliver 15: 996–1000. doi: 10.1109/61.871365
    [5] Kim H, Ko Y, Jung KH (1993) Artificial neural-network based feeder reconfiguration for loss reduction in distribution systems. IEEE T Power Deliver 8: 1356–1366. doi: 10.1109/61.252662
    [6] Goswami SK, Basu SK (1992) A new algorithm for the reconfiguration of distribution feeders for loss minimization. IEEE T Power Deliver 7: 1484–1491. doi: 10.1109/61.141868
    [7] Taylor T, Lubkeman D (1990) Implementation of heuristic search strategies for distribution feeder reconfiguration. IEEE T Power Deliver 5: 239–245. doi: 10.1109/61.107279
    [8] Lopez E, Opaso H (2004) Online reconfiguration considering variability demand. Applications to real networks. IEEE T Power Syst 19: 549–553.
    [9] Su CT, Chang CF, Chiou JP (2005) Distribution network reconfiguration for loss reduction by ant colony search algorithm.Electr Pow Syst Res75: 190–199.
    [10] Chang CF (2008) Reconfiguration and Capacitor Placement for Loss Reduction of Distribution Systems by Ant Colony Search Algorithm. IEEE T Power Syst 23: 1747–1755. doi: 10.1109/TPWRS.2008.2002169
    [11] Shirmohammadi D, Hong HW (1989) Reconfiguration of electric distribution networks for resistive line loss reduction. IEEE T Power Syst 4: 1492–1498.
    [12] Jeon YJ, Kim JC (2000) Network reconfiguration in radial distribution system using simulated annealing and tabu search. Proc IEEE Power Eng Soc Winter Meeting, 23–27.
    [13] Niknam T, Kavousifard A, Tabatabaei S, et al. (2011) Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks. J Power Sources 196: 8881–8896 doi: 10.1016/j.jpowsour.2011.05.081
    [14] Kavousi-Fard A, Niknam T (2014) Optimal Distribution Feeder Reconfiguration for Reliability Improvement Considering Uncertainty. IEEE T Power Deliver 29: 1344–1353. doi: 10.1109/TPWRD.2013.2292951
    [15] Amanulla B, Chakrabarti S, Singh SN (2012) Reconfiguration of Power Distribution Systems Considering Reliability and Power Loss. IEEE T Power Deliver 27: 918–926.
    [16] Kavousi-Fard A, Akbari-Zadeh M-R (2013) Reliability Enhancement Using Optimal Distribution Feeder Reconfiguration. Neuro computing 106: 1–11.
    [17] Zhou Q, Shirmohammadi D, Liu W (1997) Distribution feeder reconfiguration for service restoration and load balancing. IEEE T Power Syst 2: 724–729.
    [18] Frank S, Steponavice I, Rebennack S (2012) Optimal Power Flow: A Bibliographic Survey I - Formulations and Deterministic Methods. Energy Systems 3: 221–258. doi: 10.1007/s12667-012-0056-y
    [19] Frank S, Steponavice I, Rebennack S (2012) Optimal Power Flow: A Bibliographic Survey II - Non-Deterministic and Hybrid Methods. Energy Systems 3: 259–289. doi: 10.1007/s12667-012-0057-x
    [20] Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76: 60–68. doi: 10.1177/003754970107600201
    [21] Yadav P, Kumar R, Panda SK, et al. (2011) An Improved Harmony Search algorithm for optimal scheduling of the diesel generators in oil rig platforms. Energ Convers Manage 52: 893–902. doi: 10.1016/j.enconman.2010.08.016
    [22] Niknam T (2009) A new hybrid algorithm for multiobjective distribution feeder reconfiguration. Energ Convers Manage 50: 2074–2082. doi: 10.1016/j.enconman.2009.03.029
    [23] Niknam T (2009) An efficient hybrid evolutionary based on PSO and ACO algorithms for distribution feeder reconfiguration. Eur T Electr Power. DOI: 10,1002/etep.339.
  • This article has been cited by:

    1. Bruno Buonomo, Deborah Lacitignola, Cruz Vargas-De-León, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment, 2014, 100, 03784754, 88, 10.1016/j.matcom.2013.11.005
    2. Yunhu Zhang, Yanni Xiao, Modeling and analyzing the effects of fixed‐time intervention on transmission dynamics of echinococcosis in Qinghai province, 2021, 44, 0170-4214, 4276, 10.1002/mma.7029
    3. Kai Wang, Zhidong Teng, Xueliang Zhang, Dynamical behaviors of an Echinococcosis epidemic model with distributed delays, 2017, 14, 1551-0018, 1425, 10.3934/mbe.2017074
    4. David J. Gerberry, Practical aspects of backward bifurcation in a mathematical model for tuberculosis, 2016, 388, 00225193, 15, 10.1016/j.jtbi.2015.10.003
    5. Matthew A. Dixon, Uffe C. Braae, Peter Winskill, Martin Walker, Brecht Devleesschauwer, Sarah Gabriël, Maria-Gloria Basáñez, Justin V. Remais, Strategies for tackling Taenia solium taeniosis/cysticercosis: A systematic review and comparison of transmission models, including an assessment of the wider Taeniidae family transmission models, 2019, 13, 1935-2735, e0007301, 10.1371/journal.pntd.0007301
    6. Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov, Modeling and analysis of taeniasis and cysticercosis transmission dynamics in humans, pigs and cattle, 2021, 2021, 1687-1847, 10.1186/s13662-021-03341-9
    7. Joshua A. Mwasunda, Chacha S. Chacha, Mussa A. Stephano, Jacob I. Irunde, Modelling cystic echinococcosis and bovine cysticercosis co-infections with optimal control, 2022, 41, 2238-3603, 10.1007/s40314-022-02034-7
    8. LEI WANG, KAI WANG, XIAOMEI FENG, YU ZHAO, DAQING JIANG, THE EFFECT OF STOCHASTIC VARIABILITY ON TRANSMISSION DYNAMICS OF ECHINOCOCCOSIS, 2021, 29, 0218-3390, 895, 10.1142/S0218339021500224
    9. Run Yang, Jianglin Zhao, Yong Yan, Andrei Korobeinikov, Stability Analysis and Optimal Control Strategies of an Echinococcosis Transmission Model, 2022, 2022, 1748-6718, 1, 10.1155/2022/6154866
    10. Jianguo Sun, Huina Zhang, Daqing Jiang, Mustafa R. S. Kulenovic, On the Dynamics Behaviors of a Stochastic Echinococcosis Infection Model with Environmental Noise, 2021, 2021, 1607-887X, 1, 10.1155/2021/8204043
    11. Jianglin Zhao, Run Yang, A dynamical model of echinococcosis with optimal control and cost-effectiveness, 2021, 62, 14681218, 103388, 10.1016/j.nonrwa.2021.103388
    12. Birhan Getachew Bitew, Justin Manango W. Munganga, Adamu Shitu Hassan, Mathematical modelling of echinococcosis in human, dogs and sheep with intervention, 2022, 16, 1751-3758, 439, 10.1080/17513758.2022.2081368
    13. Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov, Optimal control analysis of Taenia saginata bovine cysticercosis and human taeniasis, 2022, 16, 24056731, e00236, 10.1016/j.parepi.2021.e00236
    14. Marshall W. Lightowlers, Robin B. Gasser, Andrew Hemphill, Thomas Romig, Francesca Tamarozzi, Peter Deplazes, Paul R. Torgerson, Hector H. Garcia, Peter Kern, Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years, 2021, 51, 00207519, 1167, 10.1016/j.ijpara.2021.10.003
    15. Juan Li, Zhen Jin, Youming Wang, Xiangdong Sun, Quangang Xu, Jingli Kang, Baoxu Huang, Huaiping Zhu, Data‐driven dynamical modelling of the transmission of African swine fever in a few places in China, 2022, 69, 1865-1674, 10.1111/tbed.14345
    16. Chacha S. Chacha, Mussa A. Stephano, Jacob I. Irunde, Joshua A. Mwasunda, Cystic echinococcosis dynamics in dogs, humans and cattle: Deterministic and stochastic modeling, 2023, 51, 22113797, 106697, 10.1016/j.rinp.2023.106697
    17. Joshua A. Mwasunda, Jacob I. Irunde, Stability and bifurcation analysis of a Taenia saginata model with control measures, 2023, 13, 26667207, 100311, 10.1016/j.rico.2023.100311
    18. Weixin Chen, Xinzhong Xu, Qimin Zhang, Hopf bifurcation and fixed-time stability of a reaction–diffusion echinococcosis model with mixed delays, 2024, 03784754, 10.1016/j.matcom.2024.04.002
    19. Richard Lagos, Juan Pablo Gutiérrez-Jara, Beatriz Cancino-Faure, Leidy Yissedt Lara-Díaz, Ignacio Barradas, Andrei González-Galeano, Breaking the Cycle of Echinococcosis: A Mathematical Modeling Approach, 2025, 10, 2414-6366, 101, 10.3390/tropicalmed10040101
    20. Richard Lagos, Juan Pablo Gutiérrez-Jara, Beatriz Cancino-Faure, Leidy Yissedt Lara-Díaz, Aníbal Coronel, Mar Siles-Lucas, The role of host mobility in the transmission and spread of Echinococcus granulosus: A Chile-based mathematical modeling approach, 2025, 19, 1935-2735, e0012948, 10.1371/journal.pntd.0012948
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5132) PDF downloads(1177) Cited by(5)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog