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Abstract: Reconfiguration is a valuable technique that can support the distribution grid from 
different aspects such as operation cost and loss reduction, reliability improvement, and voltage 
stability enhancement. An intelligent and efficient optimization framework, however, is required to 
reach the desired efficiency through the reconfiguration strategy. This paper proposes a new 
multi-objective optimization model to make use of the reconfiguration strategy for minimizing the 
power losses, improving the voltage profile, and enhancing the load balance in distribution grids. 
The proposed model employs the min-max fuzzy approach to find the most satisfying solution from 
a set of nondominated solutions in the problem space. Due to the high complexity and the discrete 
nature of the proposed model, a new optimization method based on harmony search (HS) algorithm 
is further proposed. Moreover, a new modification method is suggested to increase the harmony 
memory diversity in the improvisation stage and increase the convergence ability of the algorithm. 
The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus 
distribution system.   
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Nomenclature 
Indices  
e Index for scenario 
g Index for an element of a scenario 
k Index for feeder 
i,j Index for bus 
s Index for scenario  
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z Index for uncertain parameter 
m,l Index for solution in harmony memory 
n Index for an element of the solution vector  
t Index for iteration number 
w Index for objective function 

Sets 
 

B Set of buses 
C Set of feeders 
W Set of objectives  
Ω Set of solutions in problem search space 
ξs Set of scenarios 

Parameters 
 

bw Arbitrary distance bandwidth 
bwmax & bwmin Maximum and minimum values of the bandwidth 
DT Distance between scenarios. 
d Length of the control vector  
R Resistance of feeder 
Irate Nominal current  
f(.) Objective function  
fmin/max Minimum/Maximum value of objective  
g(.)/h(.) Equality/Inequality constraints 
L Number of objective functions 
HMCR Harmony memory considering rate in the range of (0,1)
PAR Pitch adjusting rate in the range of (0,1) 
PARmax & PARmin Maximum and minimum values of PAR 
Vmin/ Vmax Minimum/maximum bus voltage  
Y/θ Line admittance magnitude/phase angle  
Z Number of uncertain parameters 
ρ1,…, ρ6 Constant value in the range (0,1] 
Ns Initial number of scenarios 
Nsr Number of scenarios after reduction  
NI Maximum number of iterations  
μref Satisfying degree of the objective function  
  Fuzzy membership function value ߤ

Variables 
 

dev Voltage deviation function  
I Commitment state of the dispatchable unit 
nrand Random integer  
P/Q Active/reactive power injections  
PL Power flow in the feeder/line  
PLmax Maximum power flow in the feeder/line  
Ploss Active power losses 
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prnorm Normalized probability value of each scenario  
pr Probability of an element in a scenario. 
S A possible scenario of the problem.  
Tie Tie switch 
SW Sectionalizing Switch  
V/ δ Bus voltage magnitude/phase angle  
U Scenario set 
U Probability level in the scenario U 
X  Control vector/solution  
Xbest Best solution in HM  
xrand Random element in the control vector X 
Β Random number in the range [0,1] 

1. Introduction  

The electricity distribution system is the final link in the delivery of electric energy from the 
transmission system to end-use consumers. Distribution systems supply a large number of consumers 
and play a critical role in the power quality and reliability of the electrical services. The statistical 
reports show that more than 80 percent of electricity interruptions occur at the distribution voltage 
level [1]. These reports emphasize on the significance of reinforcing the structure and quality of the 
distribution system for reducing the overall system costs; either the cost of the power supply or the 
cost of interruptions. One of the most viable methods for enhancing the quality of the distribution 
electrical services is the reconfiguration strategy. By definition, reconfiguration is the process of 
changing the topology of the distribution grid for achieving pre-determined targets using some 
normally closed and open switches [2]. Generally, distribution systems are constructed with radial 
topology so that the system protection is preserved in acceptable level and at the same time the 
power losses are preserved low. Moreover, the radial topology is significantly less expensive than the 
mesh topology to build. In comparison to the other available reinforcement strategies of the 
distribution system such as capacitor placement, shunt reactor allocation, rewiring of the network, 
and the installation of the distributed generation, the reconfiguration strategy does not impose any 
capital investments to system planners. In addition, this strategy can be utilized in different 
scheduling time horizons, from hourly to daily to monthly, and therefore is extremely useful for 
system operators [3].  

Extensive research has been conducted in recent years to investigate various aspects of the 
reconfiguration strategy, in which the main focus has been the power loss reduction, conceivably due 
to significant power losses at the distribution system and its impact on the total system operation cost. 
Some of the well-investigated methods that have assessed the role of the reconfiguration on the 
optimization of the power losses are brute-force approach [4], neural network [5], optimum flow 
pattern [6], heuristic techniques [7], graph theory [8], ant colony algorithm [9,10], expert    
systems [11], and hybrid simulated annealing algorithm and Tabu search [12]. In the area of voltage 
drop correction, the role of the reconfiguration in reducing the maximum bus voltage deviations from 
their nominal value is discussed in [13]. The main idea is to change the topology of the network in a 
way that the voltage drop is reduced in buses and the radial structure as well as the thermal 
limitations of the feeders are preserved. In [14,15,16], the positive effect of the reconfiguration in 
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improving the reliability of the network is investigated. Also, it is shown in [16] that reconfiguration 
strategy can be considered as a failure rate reduction methodology by rerouting the power flow in 
distribution feeders. In that work, the system average interruption frequency index (SAIFI), system 
average interruption duration index (SAIDI), and average energy not supplied are considered as the 
reliability targets. The load balance increment and service restoration abilities of the reconfiguration 
strategy by changing the supply path of the consumers are addressed in [17]. This research shows the 
precious role of reconfiguration in the case of emergency situation and fault clearance in the 
network. 

The existing work clearly show the viable role of the reconfiguration strategy in smart 
distribution systems for increasing the overall efficiency of the electricity supply and delivery. 
However, the challenging issue is that each of these targets can show a conflicting behavior with 
respect to other operation targets. In order to solve this issue, the application of an appropriate 
multi-objective optimization framework seems inevitable. Moreover, the main deficiency with 
majority of the existing work is the deterministic analysis framework. Neglecting the uncertainty can 
result in idealistic and less-reliable solutions that can jeopardize the network’s reliable operation. 
Therefore, this paper proposes a multi-objective optimization framework based on fuzzy theory to 
simultaneously minimize the total active power losses, bus voltage deviations, and load imbalances. 
The proposed framework employs the min-max fuzzy satisfying approach to choose the best 
compromised solution from the non-inferior solution set in the problem search space. Since the 
optimal operation and management of the reconfiguration is a discrete nonlinear constrained 
optimization problem, a powerful optimization algorithm is required to search the problem space 
globally. Therefore, a new modified optimization method based on harmony search (HS) is proposed 
that can optimally solve the problem. In addition, a new modification method is proposed that can 
help increase the diversity of the harmony memory (HM) and thus reduce the possibility of trapping 
in local optima. This can further increase the convergence ability of the algorithm by avoiding 
premature convergence. The proposed problem is solved in a stochastic framework based on scenario 
generation to model the uncertainties of the active and reactive loads. The feasibility and satisfying 
performance of the proposed method are examined on a standard test system. 

The rest of this paper is organized as follows: Section 2 describes the problem formulation 
including the objective function and constraints. Section 3 explains the stochastic framework based 
on scenario generation. The proposed modified HS (MHS) algorithm is described in section 4. The 
proposed multi-objective framework is explained in Section 5. The simulation results on the test 
system are discussed in section 6. Finally, the concepts and conclusions are summarized in section 7.   

2. Problem Formulation 

In this section, the problem formulation, including the objective functions and constraints, are 
explained.  

2.1. Objective functions 

As mentioned above, the problem considers a multi-objective formulation optimizing 1) active 
power losses, 2) maximum bus voltage deviation and 3) feeder load balance. These objectives are 
described as following: 
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The objective function (1) represents total active power losses in network feeders, (2) represents 
the voltage deviation function which improves the voltage profile of the network by minimizing the 
maximum bus voltage deviations, and (3) represents the load balance function for improving the 
feeders load balance. To calculate these targets, the power flow is run for each switching scheme 
during the optimization process. A complete description on the power flow methods can be found  
in [18,19]. The problem control vector incorporates the optimal status of the tie and sectionalizing 
switches as shown in (4).  

2.2. Constraints 

The problem is subject to the following constraints: 

max         k kPL PL k C                                                        (5) 

( )           i i j ij ij i j
j

P VV Y Cos i B                                                  (6) 

( )          i i j ij ij i j
j

Q VV Y Sin i B                                                  (7) 

max         k kI I k C                                                              (8) 

In above equations, (5) shows the distribution lines constraint, (6) and (7) represent the nodal 
power balance equations in the polar form of the AC power flow which ensure the equality of load 
and generation at each bus. The polar form is associated with the choice of voltage magnitude and 
voltage phase angle as state variables. It is worth noting that there are some papers that use other 
forms of the AC power flow such as the rectangular form. Eq. (8) shows the feeder power flow 
constraint due to the thermal limits. It should be noted that the radial topology of the grid should be 
preserved before and after the reconfiguration. In this way, each time a tie switch is closed a 
sectionalizing switch in the formed loop is opened to make the network radial.  

3. Stochastic Method 

Due to volatility of the distribution system consumers’ load profiles, the forecast results of 
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active and reactive loads commonly represent a certain level of error. In fact, even the most accurate 
methods do not guarantee a one hundred percent accurate results. In order to model these 
uncertainties, this paper employs a scenario-based approach to generate deterministic problem of the 
stochastic problem. In this regard, the first step is to consider a probability density function (PDF) for 
the uncertain parameters. This PDF is then split into several probability levels as shown in Fig. 1. 
Each of these probability levels shows the existence of some error in the value of the uncertain 
parameter. In order to generate a complete scenario, the roulette wheel mechanism (RWM) is 
employed. Fig. 2 shows the structure of RWM oriented with the seven-level PDF shown in Fig. 1. 
Suppose that there is z number of uncertain parameters in the problem. For each scenario s and for 
each uncertain parameter, a random number β is generated uniformly in the range of [0,1].  

 

 

 

 
 
 

Figure 1. PDF used to model the uncertainty associated with active and reactive loads. 

 

Figure 2. The Roulette Wheel Mechanism (RWM). 

The length of the RWM is 1 in which each slice has a specific length which shows its specific 
value. According to its value, β drops in one of the slices of the RWM. This slice refers to one of the 
probability levels in the PDF of the relevant uncertain parameter in Fig. 1. It is clear that a slice in 
RWM with wider area refers to an interval in its PDF (here Fig. 1) with higher probability. Each 
probability level indicates the possibility of some forecast error in the uncertain parameter. This 
process is repeated z times to generate a complete scenario.      
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By repeating this procedure, Ns initial scenarios are produced:   
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Each of these scenarios has a specific probability value. Initially, a large number of scenarios is 
generated. In order to reduce computation requirements, the number of scenarios should be reduced. 
The idea for scenario reduction is based on two main tasks: 1) deleting scenarios with the lowest 
probability and 2) deleting similar scenarios. The following steps are employed to reduce the 
scenarios: 
Step 1: Assume ξs as the initial set of the scenarios. Also assume DS as the set of scenarios that are 
kept after scenario reduction. It is clear that this set is empty at the beginning. Evaluate the distance 
between any two scenarios as follows: 

   2

' ' '
1

, , ' 1,2, ,
w

ee e e eg e g S
g

DT DT S S s s e e N


                                   (11) 

Step 2: For each scenario Re, calculate the least distance with other scenarios as follows: 

'min , ' ; 'el ee sDT DT e e N e e                                                     (12) 

where l holds the number of scenarios with the least distance from scenario s.  
Step 3: Multiply the probability of each scenario pre with the least distance from other scenarios:   

' ' 'e l l e l sPD pr DT e N                                                          (13) 

Step 4: The dth scenario with the lowest value of the below criterion is omitted from the initial 
scenarios set ξs: 

mind e sPD PD e N                                                           (14) 

   , , l l dd DS DS d pr pr pr                                                 (15) 

Step 5: Repeat Steps 2 to 4 until finding the desired number of scenarios.  
By the use of this procedure, Nsr final scenarios are remained. Therefore, by solving the 

stochastic problem for all scenarios, there will be Nsr final optimal solutions. But, it is generally 
expected that a stochastic problem would finally has one single optimal solution than a set of optimal 
solutions as follows:      

1

srN
norm

s s
s

f pr f


                                                            (16) 

It is worth noting that due to the discrete nature of the proposed optimization problem, it is not 
possible to solve the problem for each scenario and then aggregate them to reach a final solution. In 
fact, the proposed stochastic optimization problem is solved just one time and all scenarios are 
applied when calculating the objective functions. In other words, each time that a new solution is 
created during the optimization process, all Nsr scenarios are applied to the problem and the objective 
functions are calculated Nsr times. Therefore, for the single feasible solution Xi, Nsr scenarios generate 
Nsr values for the objective functions with different probabilities. The aggregation process is done for 
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these Nsr objective function values to reach a final aggregated value for the objective functions. This 
aggregated value belongs to the feasible solution Xi. 

The initial number of scenarios considered here is 1000 which is reduced to 20 scenarios after 
scenario reduction. This process shows a filtering ratio of 1000/20 = 50 for the proposed problem. 
This value of filtering ratio is chosen to reduce computational burden. It is clear that a larger number 
of scenarios would result in a better covering of uncertainty spectrum but with the cost of higher 
computational burden. The filtering ratio can be reduced to capture much uncertainty spectrum of the 
problem. Therefore an appropriate filtering ratio as scenario reduction should be utilized to reduce 
the cost of computational effort while keeping a good approximation of the system uncertainties. 

4. Modified Harmony Search Algorithm  

4.1. Original harmony search algorithm 

HS algorithm was first introduced by Geem et al. in 2001 [20] to mimic the behavior of 
musicians for playing a note with the most harmony. This algorithm is categorized in the group of 
metaheuristic optimization methods that search the problem space with an initial random start. In 
comparison with other optimization methods, HS is constructed such that it can handle both discrete 
and continuous optimization problems without requiring the differential gradients. It does not need 
an initial setting of the variables and is free from divergence. It is further shown that HS overcomes 
the main shortcoming of genetic algorithm in the building block theory and thus does not depend on 
the formation of the chromosomes during the improvisation stage. In order to solve the problem, HS 
algorithm constructs an initial random matrix called harmony memory (HM). Each row of HM 
shows a note that is played by a musician and should be improved to reach the most harmony with 
other notes. In this way, the improvisation stage is implemented based on three main ideas: 1) 
memory consideration 2) pitch adjustment and 3) random research. In the memory consideration part, 
the HM is improved by mixing the available solutions in HM to generate a new solution using the 
HM considering rate (HMCR) constant as follows: 

1

1

        

       

[ ,..., ]

[ ,..., ]

HM
mnnew

mn rand
mn

HM HM HM
m m md

rand rand rand
m m md

x for rand HMCR
x

x for else

X x x

X x x

  





                                               (17) 

According to the above formulation, as the value of HMCR parameter becomes larger, the new 
solution is more likely to be selected from the HM solutions.  

The second improvisation stage happens by pitch adjustment of the solutions. Each component 
that comes out of the memory consideration stage is checked to see whether it should be 
pitch-adjusted or not. Here the pitch adjusting rate (PAR) is employed to fix the new solutions as 
follows:  

        

                          

rand
mnnew

mn rand
mn

x rand bw for rand PAR
x

x for else

    


                                       (18) 
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In the original HS algorithm, bw is constant. Nevertheless, it is demonstrated in the literature 
that HS performance is improved by updating the value of bw as follows [21]:  

max

min

max

exp( )

( )

tbw bw t

bw
Ln

bw
NI





 


                                                       (19) 

Similarly, it is shown that by updating the value of PAR, the total performance of the HS can be 
improved effectively [21]:  

max min
min ( )

t

PAR PAR
PAR PAR t

NI


                                               (20) 

By applying the above steps, HM is updated. Then, the termination criterion is checked. In the 
case that the termination criterion is not satisfied, the above steps are repeated.  

4.2. Modification method based on HS 

HS algorithm is a powerful optimization tool that has shown great success in solving the 
discrete optimization problems. This paper, however, proposes a new modification method to 
increase the diversity of the HM and avoiding the premature convergence. During the optimization 
process, each solution in the HM is improved by these modification methods to find a more optimal 
position.   

- Modification strategy 1 

The first modification method employs the crossover and mutation operators from the genetic 
algorithm to generate new solutions out of the HM. For each solution Xm, three random solutions Xm1, 
Xm2, Xm3 are chosen such that m1 ≠ m2 ≠ m3 ≠ m. Now, by using the mutation operator, these three 
solutions are mixed to generate a random solution: 

1 2 31 ( )ut HM HM HM
m m mX X X X                                                     (21) 

Considering Xbest as the best solution in HM, three new solutions are generated as below: 

1
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2 3

3 4
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if
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                                      (22) 
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- Modification strategy 2 

The second modification method shows a consultation among the players for reaching the most 
harmony among them. Therefore, for each two players/solutions Xm and Xl, the interaction practice 
can be interpreted by the following mathematical formulation:    

7

7

If   ( )  ( )

( )

Elseif  ( )  ( )

( )

m l

new
m m m l

m l

new
m m l m

f X f X

X X X X

f X f X

X X X X







  


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                                                    (23) 

- Modification strategy 3 

The third modification method is a dynamic formulation to update the HMCR value. As 
mentioned before, a larger HMCR will let more similarity appear between the new solutions with 
those in the HM and vice versa. Nevertheless, it is more practical to have a larger HMCR at the 
beginning of the optimization to motivate the algorithm for using HM. This simulates a more local 
search at the beginning of the optimization. On the other hand, at the end of the optimization a 
smaller HMCR will let the algorithm explore the unknown search space with more random 
movements. This idea shows a global search when HM has reached to a saturated status to yield any 
additional optima. Therefore, the following dynamic formulation is chosen for updating the HMCR 
value based on running the algorithm for several times:     

1

1

1

2

NI

t tHMCR HMCR
NI

 
 
 


   
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                                                           (24) 

5. Interactive Fuzzy Satisfying Method 

The proposed problem is a multi-objective optimization problem with conflicting targets which 
requires an appropriate managing framework to be solved optimally. Technically, a multi-objective 
optimization problem can be shown as below:  

1 2min [ ( ), ( ),..., ( )]

. .

( ) 0

( ) 0

T
LF f X f X f X

s t

h X

g X






                                              (25) 

In order to solve the above formulation, this paper suggests an interactive fuzzy satisfying 
approach. This method let the operator determine the satisfying degree of each objective. In fact, this 
formulation would choose the most optimal solution from the non-inferior solution set such that the 
operators’ preferences are satisfied:   

 ( ) min max ( )ref f
w w

x w W
F X X 

 
                                                (26) 
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In the above equation, the parameter μref shows the satisfying degree of the relevant objective 

which is determined by the operator in the range [0,1]. Also, f
w is the membership function value of 

wth objective which is calculated using the trapezoidal fuzzy membership as follows: 

min

max
min max

max min

max

1          ( )

( )
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0         ( )

w w
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w w
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for f X f

f f X
X for f f X f

f f

for f X f



 


   
 

                             (27) 

6. Simulation Results 

This section investigates the performance of the proposed method in solving the reconfiguration 
problem for the IEEE 32-bus test system [18]. Fig. 3 shows the one-line diagram of the test system, 
which includes 32 buses, 5 tie switches (shown by dotted lines) and 32 sectionalizing switches 
(shown by solid lines). The system nominal voltage level is 12.66 kV. Regarding the optimization 
algorithm, 30 random solutions are generated in the HM and the termination criterion is 200 
iterations. The single objective optimization (Case 1) is done in the deterministic framework to 
highlight the performance (Case 2).  

 

Figure 3. The one-line diagram of the 32-bus test system. 

Case 1: First, the analysis is performed on the single-objective optimization structure. The main 
purpose is to show the positive role of the reconfiguration strategy on different objectives. Table 1 
shows the results of the optimization on the network active power losses. It is worth noting that the 



217 

AIMS Energy  Volume 4, Issue 2, 206-221. 

initial network power loss is 202.67 kW which is reduced to 139.53 kW after the reconfiguration. For 
better comparison, the results of some of existing methods are provided in the table. According to 
these results, the proposed MHS algorithm could reach the global solution also found by other 
methods.   

Table 1. Single objective optimization of power losses target (Deterministic Framework). 

Open switches Power loss [kW] Method 
s7,s9,s14,s32,s37 139.53 DPSO [22] 
s7,s9,s14,s32,s37 139.53 DPSO–ACO [23] 
s7,s9,s14,s32,s37 139.53 HBMO [13] 
s7, s10, s14, s32,s37 140.26 Shirmohammadi [11] 
s7,s9,s14,s32,s37 139.53 DPSO–HBMO [22] 
s7,s9,s14,s32,s37 139.53 MHBMO [13] 
s7,s9,s14,s32,s37 139.53 McDermott et al. [13] 
s7, s9, s14, s32, s37 139.53  The proposed MHS 

Table 2 shows the results of the optimization of the voltage deviation function. According to 
these results, the voltage deviation of the system is reduced from the initial value of 0.087 pu to 
0.061 pu after the reconfiguration. Note that the improvement is achieved without any capital 
investments and only by switching actions in the network. Similarly, the proposed MHS algorithm 
could reach the global optimal solution that is found by other methods for this network.  

Table 2. Single objective optimization of voltage deviation target (Deterministic Framework). 

Open switches Minimum voltageVoltage deviation[p.u] Method 
s7,s9,s14,s32,s37 0.93879681 0.06120031 DPSO [22] 
s7,s9,s14,s32,s37 0.93879681 0.06120031 PSO–ACO [23] 
s7,s9,s14,s32,s37 0.93879681 0.06120031 DPSO–HBMO [22] 
s7,s9,s14,s32,s37 0.93879681 0.06120031 DPSO–ACO [23] 
s7,s10,s14,s32,s370.93781902 0.06218097 GA [13] 
s7,s9,s14,s32,s37 0.93879681 0.06120031 HBMO [13] 
s7,s9,s14,s32,s37 0.93879681 0.06120031 The proposed MHS 

The simulation results of optimizing the load balance objective are shown in Table 3. In order to 
analyze this objective, the feeders’ maximum current capacities are assumed as the following: 
feeders 1 and 2 can carry up to 1200 A, feeders 3, 4, and 5 can carry up to 426 A and the other 
feeders can carry up to 307 A. The initial value of the load balance objective function before the 
reconfiguration is 0.5413235. The simulations are done by genetic algorithm, original HS, and the 
proposed MHS algorithm. According to the simulation results, the proposed MHS could reduce the 
load balance target value from 0.541 to the optimal value of 0.344 after the reconfiguration. In 
comparison to other algorithms, the proposed MHS could reach a better solution than the other 
algorithms. According to the last column of Table 3, the proposed MHS could reach the optimal 
solution in less time which shows the higher search ability of this algorithm. Being equipped with 
powerful searching mechanisms, the proposed MHS could find the optimal solution in the first few 
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iterations.       

Table 3. Single objective optimization of load balance target (Deterministic Framework). 

CPU Time (s)Open switches Load Balance Method 
13.54 s7,s11,s14,s36,s37 0.344162601 Genetic Algorithm 
11.75 s7,s10,s14,s36,s37 0.343929465 Harmony Search Algorithm 
8.37 s7,s9,s14,s36,s37 0.343774159 The proposed MHS 

Case 2: In order to simultaneously optimize all objective functions, the problem is solved using 
the discussed min-max fuzzy structure. Table 4 shows the results of multi-objective optimization 
framework. It is worth noting that this paper assumes similar significance for all objectives and thus 
consider μref = 1 for the three objectives. It is clear that the satisfying degree of objectives can change 
according to the preferences and requirements. The simulation results show that the proposed MHS 
algorithm could optimize all objectives properly. In addition, while each of the objective functions 
has attained higher value than the single-objective optimization results, they are all optimized and 
reduced to appropriate value with regard to the initial network situation. In other words, the proposed 
multi-objective framework could reach a proper balance in optimizing the three objectives. From the 
computational burden point of view, the proposed MHS algorithm shows superior performance than 
the other algorithms. In order to better understand the positive role of the reconfiguration on the 
voltage profile, Fig. 4 shows the network buses voltage profiles before and after the reconfiguration. 
The voltage levels of most of the buses are improved after the optimal switching.        

Table 4. Multi-objective optimization using interactive fuzzy satisfying method 
(Stochastic Framework). 

CPU Time 

(s) 

Open switches Load 

Balance 

Voltage deviation 

[p.u] 

Power loss 

[kW] 
Method 

264.38 s6,s9,s14,s36,s37 0.403721610.06266643 143.761969 Genetic Algorithm 

221.06 s7,34,s11,s32,s37 0.375311570.062183436 142.7391667 
Harmony Search 

Algorithm 

153.78 s7,s10,s14,s32,s37 0.377315680.06218097 141.261544 Proposed MHS 

 

Figure 4. Voltage profile improvement after the reconfiguration. 
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In order to assess the effect of considering uncertainty on the problem, the simulation results for 
two cases of deterministic and stochastic frameworks are provided in Table 5. According to these 
results, considering the uncertainty effects in the simulations has increased the optimal values of all 
objective functions. While the objective function values in the stochastic framework seem to be far 
from their optimal values in the deterministic framework, but the new values are more realistic and 
reliable. In other words, this increase in the objective functions is the cost of reaching more reliable 
and practical values compatible with the likely forecast errors in uncertain parameters.      

Table 5. Comparison of objective function values in the deterministic and stochastic 
framework. 

Load BalanceVoltage deviation [p.u] Power loss [kW]Method 

0.36440572 0.06184041 140.327481 Deterministic Framework 
0.37731568 0.06218097 141.261544 Stochastic Framework 

Finally, Table 6 shows the results of multi-objective optimization problem considering different 
weighting factors for the objective functions. The main purpose is to show the capability of the fuzzy 
min-max framework for handling different targets during the optimization. According to the results 
in Table 6, there is a proper control on satisfying each objective function by adjusting the reference 
membership function μw

ref for wth target. In other words, in each scenario, the proposed 
multi-objective framework was successful to find the most compromised solution from the set of 
non-inferior solutions properly.     

Table 6. Objective function values in with different weighting factors. 

Scenario No. 
Importance Load 

Balance 
Voltage 

deviation [p.u] 
Power loss 

[kW] 1ߤ
ref 2ߤ

ref  3ߤ
ref 

Scenario 1  1 1 1 0.3773 0.062180 141.2615 
Scenario 2  0.9 1 1 0.3884 0.061969 140.4725 
Scenario 3 1 0.9 1 0.3507 0.062763 140.7365 
Scenario 4  1 1 0.9 0.3638 0.061846 142.8311 
Scenario 5  0.8 1 1 0.4022 0.061794 140.3472 
Scenario 6  1 0.8 1 0.3396 0.063710 140.0648 
Scenario 7  1 1 0.8 0.3473 0.061547 143.0507 

7. Conclusion 

This paper proposed a stochastic multi-objective optimization framework to solve the 
reconfiguration problem in the radial smart distribution networks. The proposed problem minimizes 
active power losses, voltage deviations, and load imbalance using a min-max fuzzy satisfying 
structure. Also, a new modification method based on MHS algorithm was devised to solve the 
problem optimally. In addition, a scenario based stochastic method was employed to model the 
uncertainty of the forecast error in active and reactive loads. Simulations on an IEEE standard 
distribution test system showed the considerable capability of the reconfiguration strategy in 
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improving the considered objective functions through the optimal switching. In addition, it was seen 
that the proposed multi-objective framework can manage the desired objectives by providing an 
appropriate tradeoff in objective optimization. From the optimization point of view, the proposed 
MHS algorithm outperformed some of the well-known methods in the area.   
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