Citation: Albert W. Pilkington IV, Justin Legleiter. Challenges in understanding the structure/activity relationship of Aβ oligomers[J]. AIMS Biophysics, 2019, 6(1): 1-22. doi: 10.3934/biophy.2019.1.1
[1] | Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828 |
[2] | Tareq M. Al-shami, Abdelwaheb Mhemdi . A weak form of soft $ \alpha $-open sets and its applications via soft topologies. AIMS Mathematics, 2023, 8(5): 11373-11396. doi: 10.3934/math.2023576 |
[3] | Samer Al-Ghour, Hanan Al-Saadi . Soft weakly connected sets and soft weakly connected components. AIMS Mathematics, 2024, 9(1): 1562-1575. doi: 10.3934/math.2024077 |
[4] | Orhan Göçür . Amply soft set and its topologies: AS and PAS topologies. AIMS Mathematics, 2021, 6(4): 3121-3141. doi: 10.3934/math.2021189 |
[5] | Tareq M. Al-shami, Salem Saleh, Alaa M. Abd El-latif, Abdelwaheb Mhemdi . Novel categories of spaces in the frame of fuzzy soft topologies. AIMS Mathematics, 2024, 9(3): 6305-6320. doi: 10.3934/math.2024307 |
[6] | Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303 |
[7] | Tareq M. Al-shami, Abdelwaheb Mhemdi, Radwan Abu-Gdairi, Mohammed E. El-Shafei . Compactness and connectedness via the class of soft somewhat open sets. AIMS Mathematics, 2023, 8(1): 815-840. doi: 10.3934/math.2023040 |
[8] | Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535 |
[9] | Mesfer H. Alqahtani, Zanyar A. Ameen . Soft nodec spaces. AIMS Mathematics, 2024, 9(2): 3289-3302. doi: 10.3934/math.2024160 |
[10] | Rehab Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, Ismail Ibedou . Soft closure spaces via soft ideals. AIMS Mathematics, 2024, 9(3): 6379-6410. doi: 10.3934/math.2024311 |
In 1999, Molodtsov [30] founded a novel mathematical tool for dealing with uncertainties, namely soft set. One of the merits of this tool is its free from the difficulties that the other existing methods such as fuzzy set theory and probability theory. This matter makes soft set theory very popular research area all over the globe. Immediately afterwards, Maji et al. [26] in 2003, established the basis of soft operations between soft sets. Although some of these operations were considered ill-defined, they formed the starting point of constructing soft set theory. In this regard, Ali et al. [5] redefined some soft operators to make them more functional for improving several new results and they explored new soft operators such as restricted union and restricted intersection of two soft sets.
In 2011, Shabir and Naz [32] exploited soft sets to introduce soft topological spaces. The fundamental soft topological notions such as the operators of soft closure and interior, soft subspace and soft separation axioms were investigated by them. Min [29] completed study of soft separation axioms and revised some results obtained in [32]. Soft compactness was introduced and discussed by Aygünoǧlu and Aygün [14] in 2012. Hida [23] defined another type of soft compactness depending on the belong relations. Al-shami [10] did some amendments concern some types of soft union and intersection. Then, he [11] studied new types of soft compactness. The authors of [25] presented soft maps by using two crisp maps, one of them between the sets of parameters and the second one between the universal sets. However, the authors of [36] introduced soft maps by using the concept of soft points. Some applications of different types of soft maps were the goal of some articles, see [25,27,36].
Until 2018, the belong and non-belong relations that utilized in these studies are those given by [32]. In 2018, the authors of [20] came up new relations of belong and non-belong between an element and soft set, namely partial belong and total non-belong relations. In fact, these relations widely open the door to study and redefine many soft topological notions. This leads to obtain many fruitful properties and changes which can be seen significantly on the study of soft separation axioms as it was showed in [9,20,21]. As another path of study soft separation axioms, the authors of [16,35] studied them with respect to the distinct soft points. Recently, some applications of compactness and soft separation axioms have been investigated in [6,7,33,34].
Das and Samanta [19] studied the concept of a soft metric based on the soft real set and soft real numbers given in [18]. Wardowski [36] tackled the fixed point in the setup of soft topological spaces. Abbas et al.[1] presented soft contraction mappings and established a soft Banach fixed point theorem in the framework of soft metric spaces. Recently, many researchers explored fixed point findings in soft metric type spaces, see, for example, [2,37]. Some interesting works regarding deferential equations were given in [17,24,28].
One of the significant ideas that helps to prove some properties and remove some problems on soft topology is the concept of a soft point. It was first defined by Zorlutuna et al. [38] in order to study interior points of a soft set and soft neighborhood systems. Then [19] and [31] simultaneously redefined soft points to discuss soft metric spaces. In fact, the recent definition of a soft point makes similarity between many set-theoretic properties and their counterparts on soft setting. Two types of soft topologies, namely enriched soft topology and extended soft topology were studied in [14] and [31], respectively. The equivalence between these two topologies have been recently proved by Al-shami and Kočinac [12].
We organized this paper as follows: After this introduction, we allocate Section (2) to recall some definitions and results of soft sets and soft topologies that will help us to understand this work. Section (3) introduces $ tt $-soft $ \alpha T_i\; (i = 0, 1, 2, 3, 4) $ and $ tt $-soft $ \alpha $-regular spaces with respect to ordinary points by using total belong and total non-belong relations. The relationships between them and their main properties are discussed with the help of interesting examples. In Section (4), we explore an $ \alpha $-fixed soft point theorem and study some main properties. In particular, we conclude under what conditions $ \alpha $-fixed soft points are preserved between a soft topological space and its parametric topological spaces. Section (6) concludes the paper.
To well understand the results obtained in this study, we shall recall some basic concepts, definitions and properties from the literature.
Definition 2.1. [30] For a nonempty set $ X $ and a set of parameters $ E $, a pair $ (G, E) $ is said to be a soft set over $ X $ provided that $ G $ is a map of $ E $ into the power set $ P(X) $.
In this study, we use a symbol $ G_E $ to refer a soft set instead of $ (G, E) $ and we identify it as ordered pairs $ G_E = \{(e, G(e)):e\in E $ and $ G(e)\in P(X)\} $.
A family of all soft sets defined over $ X $ with $ E $ is denoted by $ S(X_E) $.
Definition 2.2. [22] A soft set $ G_E $ is said to be a subset of a soft set $ H_E $, denoted by $ G_E\widetilde{\subseteq} H_E $, if $ G(e)\subseteq H(e) $ for each $ e\in E $.
The soft sets $ G_E $ and $ H_E $ are said to be soft equal if each one of them is a subset of the other.
Definition 2.3. [20,32] Let $ G_E $ be a soft set over $ X $ and $ x\in X $. We say that:
(ⅰ) $ x\in G_E $, it is read: $ x $ totally belongs to $ G_E $, if $ x\in G(e) $ for each $ e\in E $.
(ⅱ) $ x\not\in G_E $, it is read: $ x $ does not partially belong to $ G_E $, if $ x\not\in G(e) $ for some $ e\in E $.
(ⅲ) $ x\Subset G_E $, it is read: $ x $ partially belongs to $ G_E $, if $ x\in G(e) $ for some $ e\in E $.
(ⅳ) $ x\not\Subset G_E $, it is read: $ x $ does not totally belong to $ G_E $, if $ x\not\in G(e) $ for each $ e\in E $.
Definition 2.4. Let $ G_E $ be a soft set over $ X $ and $ x\in X $. We say that:
(ⅰ) $ G_E $ totally contains $ x $ if $ x\in G_E $.
(ⅱ) $ G_E $ does not partially contain $ x $ if $ x\not\in G_E $.
(ⅲ) $ G_E $ partially contains $ x $ if $ x\Subset G_E $.
(ⅳ) $ G_E $ does not totally contain $ x $ if $ x\not\Subset G_E $.
Definition 2.5. [5] The relative complement of a soft set $ G_E $ is a soft set $ G^c_E $, where $ G^c: E\rightarrow 2^X $ is a mapping defined by $ G^c(e) = X\setminus G(e) $ for all $ e\in E $.
Definition 2.6. [19,20,26,31] A soft set $ (G, E) $ over $ X $ is said to be:
(ⅰ) a null soft set, denoted by $ \widetilde{\Phi} $, if $ G(e) = \emptyset $ for each $ e\in E $.
(ⅱ) an absolute soft set, denoted by $ \widetilde{X} $, if $ G(e) = X $ for each $ e\in E $.
(ⅲ) a soft point $ P^x_e $ if there are $ e\in E $ and $ x\in X $ such that $ G(e) = \{x\} $ and $ G(e') = \emptyset $ for each $ e' \in E\setminus \{e\} $. We write that $ P^x_e\in G_E $ if $ x\in G(e) $.
(ⅳ) a stable soft set, denoted by $ \widetilde{S} $, if there is a subset $ S $ of $ X $ such that $ G(e) = S $ for each $ e\in E $. In particular, we denoted by $ x_E $ if $ S = \{x\} $.
(ⅴ) a countable (resp. finite) soft set if $ G(e) $ is countable (resp. finite) for each $ e\in E $. Otherwise, it is said to be uncountable (resp. infinite).
Definition 2.7. [5,26] Let $ G_E $ and $ H_E $ be two soft sets over $ X $.
(ⅰ) Their intersection, denoted by $ G_E \widetilde{\bigcap} H_E $, is a soft set $ U_E $, where a mapping $ U:E\rightarrow 2^X $ is given by $ U(e) = G(e)\bigcap H(e) $.
(ⅱ) Their union, denoted by $ G_E\widetilde{\bigcup} H_E $, is a soft set $ U_E $, where a mapping $ U:E\rightarrow 2^X $ is given by $ U(e) = G(e)\bigcup H(e) $.
Definition 2.8. [15] Let $ G_E $ and $ H_F $ be two soft sets over $ X $ and $ Y $, respectively. Then the cartesian product of $ G_E $ and $ H_F $, denoted by $ G\times H_{E\times F} $, is defined as $ (G\times H)(e, f) = G(e)\times H(f) $ for each $ (e, f)\in E\times F $.
The soft union and intersection operators were generalized for any number of soft sets in a similar way.
Definition 2.9. [25] A soft mapping between $ S(X_A) $ and $ S(Y_B) $ is a pair $ (f, \phi) $, denoted also by $ f_{\phi} $, of mappings such that $ f:X\rightarrow Y $, $ \phi:A\rightarrow B $. Let $ G_A $ and $ H_B $ be subsets of $ S(X_A) $ and $ S(Y_B) $, respectively. Then the image of $ G_A $ and pre-image of $ H_B $ are defined as follows.
(ⅰ) $ f_{\phi}(G_A) = (f_{\phi}(G))_B $ is a subset of $ S(Y_B) $ such $ f_{\phi}(G)(b) = \bigcup_{a\in \phi^{-1}(b)}f(G(a)) $ for each $ b\in B $.
(ⅱ) $ f^{-1}_{\phi}(H_B) = (f^{-1}_{\phi}(H))_A $ is a subset of $ S(X_A) $ such that $ f^{-1}_{\phi}(H)(a) = f^{-1}(H(\phi(a))) $ for each $ a\in A $.
Definition 2.10. [38] A soft map $ f_{\phi}:S(X_A)\rightarrow S(Y_B) $ is said to be injective (resp. surjective, bijective) if $ \phi $ and $ f $ are injective (resp. surjective, bijective).
Definition 2.11. [32] A family $ \tau $ of soft sets over $ X $ under a fixed set of parameters $ E $ is said to be a soft topology on $ X $ if it satisfies the following.
(ⅰ) $ \widetilde{X} $ and $ \widetilde{\Phi} $ are members of $ \tau $.
(ⅱ) The intersection of a finite number of soft sets in $ \tau $ is a member of $ \tau $.
(ⅲ) The union of an arbitrary number of soft sets in $ \tau $ is a member of $ \tau $.
The triple $ (X, \tau, E) $ is called a soft topological space. A member in $ \tau $ is called soft open and its relative complement is called soft closed.
Proposition 2.12. [32] In $ (X, \tau, E) $, a family $ \tau_e = \{G(e): G_E\in\tau\} $ is a classical topology on $ X $ for each $ e\in E $.
$ \tau_e $ is called a parametric topology and $ (X, \tau_e) $ is called a parametric topological space.
Definition 2.13. [32] Let $ (X, \tau, E) $ be a soft topological space and $ \emptyset\neq Y\subseteq X $. A family $ \tau_Y = \{\widetilde{Y}\widetilde{\bigcap}G_E: G_E\in\tau\} $ is called a soft relative topology on $ Y $ and the triple $ (Y, \tau_Y, E) $ is called a soft subspace of $ (X, \tau, E) $.
Definition 2.14. [3] A subset $ G_E $ of $ (X, \tau, E) $ is called soft $ \alpha $-open if $ G_E\widetilde{\subseteq} int(cl(int(G_E))) $.
The following result will help us to establish some properties of soft $ \alpha $-separation axioms and soft $ \alpha $-compact spaces, see, for example, Theorem (3.16) and Proposition (3.24). It implies that the family of soft $ \alpha $-open subsets of $ (X, \tau, E) $ forms a new soft topology $ \tau^{\alpha} $ over $ X $ that is finer than $ \tau $. In fact, this characteristic of soft $ \alpha $-open sets that does not exist for the families of soft semi-open, soft pre-open, soft $ b $-open and soft $ \beta $-open sets.
(ⅰ) Every soft open set is soft $ \alpha $-open.
(ⅱ) The arbitrary union (finite intersection) of soft $ \alpha $-open sets is soft $ \alpha $-open.
Definition 2.16. [3] Let $ G_E $ be a subset of $ (X, \tau, E) $. Then $ \overline{G_E}^{\alpha} $ is the intersection of all soft $ \alpha $-closed sets containing $ G_E $.
It is clear that: $ x\in \overline{G_E}^{\alpha} $ if and only if $ G_E\widetilde{\bigcap}U_E\neq \widetilde{\Phi} $ for each soft $ \alpha $-open set $ U_E $ totally containing $ x $; and $ P^x_e\in \overline{G_E}^{\alpha} $ if and only if $ G_E\widetilde{\bigcap}U_E\neq \widetilde{\Phi} $ for each soft $ \alpha $-open set $ U_E $ totally containing $ P^x_e $.
Proposition 2.17. [8] Let $ \widetilde{Y} $ be soft open subset of $ (X, \tau, E) $. Then:
1. If $ (H, E) $ is soft $ \alpha $-open and $ \widetilde{Y} $ is soft open in $ (X, \tau, E) $, then $ (H, E)\widetilde{\bigcap}(Y, E) $ is a soft $ \alpha $-open subset of $ (Y, \tau_{Y}, E) $.
2. If $ \widetilde{Y} $ is soft open in $ (X, \tau, E) $ and $ (H, E) $ is a soft $ \alpha $-open in $ (Y, \tau_{Y}, E) $, then $ (H, E) $ is a soft $ \alpha $-open subset of $ (X, \tau, E) $.
Definition 2.18. [4] $ (X, \tau, E) $ is said to be:
(ⅰ) soft $ \alpha T_0 $ if for every $ x\neq y \in X $, there is a soft $ \alpha $-open set $ U_E $ such that $ x\in U_E $ and $ y\not\in U_E $; or $ y\in U_E $ and $ x\not\in U_E $.
(ⅱ) soft $ \alpha T_1 $ if for every $ x\neq y \in X $, there are two soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in U_E $ and $ y\not\in U_E $; and $ y\in V_E $ and $ x\not\in V_E $.
(ⅲ) soft $ \alpha T_2 $ if for every $ x\neq y \in X $, there are two disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in G_E $ and $ y\in F_E $.
(ⅳ) soft $ \alpha $-regular if for every soft $ \alpha $-closed set $ H_E $ and $ x\in X $ such that $ x\not\in H_E $, there are two disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ H_E\widetilde{\subseteq} U_E $ and $ x\in V_E $.
(ⅴ) soft $ \alpha $-normal if for every two disjoint soft $ \alpha $-closed sets $ H_{E} $ and $ F_{E} $, there are two disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ H_{E}\widetilde{\subseteq} U_E $ and $ F_{E}\widetilde{\subseteq} V_E $.
(ⅵ) soft $ \alpha T_3 $ (resp. soft $ \alpha T_4 $) if it is both soft $ \alpha $-regular (resp. soft $ \alpha $-normal) and soft $ \alpha T_1 $-space.
Definition 2.19. [8] A family $ \{G_{i_E}: i\in I\} $ of soft $ \alpha $-open subsets of $ (X, \tau, E) $ is said to be a soft $ \alpha $-open cover of $ \widetilde{X} $ if $ \widetilde{X} = \widetilde{\bigcup}_{i\in I}G_{i_E} $.
Definition 2.20. [8] $ (X, \tau, E) $ is said to be:
(ⅰ) soft $ \alpha T'_2 $ if for every $ P^x_e\neq P^y_{e'} \in \widetilde{X} $, there are two disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ containing $ P^x_e $ and $ P^y_{e'} $, respectively.
(ⅱ) soft $ \alpha $-compact if every soft $ \alpha $-open cover of $ \widetilde{X} $ has a finite subcover.
Proposition 2.21. [8]
(ⅰ) A soft $ \alpha $-compact subset of a soft $ \alpha T^{\prime}_2 $-space is soft $ \alpha $-closed.
(ⅱ) A stable soft $ \alpha $-compact subset of a soft $ \alpha T_2 $-space is soft $ \alpha $-closed.
To study the properties that preserved under soft $ \alpha^{\star} $-homeomorphism maps, the concept of a soft $ \alpha $-irresolute map will be presented in this work under the name of a soft $ \alpha^{\star} $-continuous map.
Definition 2.22. [8] $ g_\varphi:(X, \tau, E) \rightarrow (Y, \theta, E) $ is called soft $ \alpha^{\star} $-continuous if the inverse image of each soft $ \alpha $-open set is soft $ \alpha $-open.
Proposition 2.23. [8] The soft $ \alpha^{\star} $-continuous image of a soft $ \alpha $-compact set is soft $ \alpha $-compact.
Definition 2.24. [3] A soft map $ f_{\varphi}:(X, \tau, A)\rightarrow (Y, \theta, B) $ is said to be:
(ⅰ) soft $ \alpha $-continuous if the inverse image of each soft open set is soft $ \alpha $-open.
(ⅱ) soft $ \alpha $-open (resp. soft $ \alpha $-closed) if the image of each soft open (resp. soft closed) set is soft $ \alpha $-open (resp. soft $ \alpha $-closed).
(ⅲ) a soft $ \alpha $-homeomorphism if it is bijective, soft $ \alpha $-continuous and soft $ \alpha $-open.
Definition 2.25. A soft topology $ \tau $ on $ X $ is said to be:
(ⅰ) an enriched soft topology [14] if all soft sets $ G_E $ such that $ G(e) = \emptyset $ or $ X $ are members of $ \tau $.
(ⅱ) an extended soft topology [31] if $ \tau = \{G_E: G(e)\in \tau_{e} $ for each $ e\in E\} $, where $ \tau_e $ is a parametric topology on $ X $.
Al-shami and Kočinac [12] proved the equivalence of enriched and extended soft topologies and obtained many useful results that help to study the relationships between soft topological spaces and their parametric topological spaces.
Theorem 2.26. [12] A subset $ (F, E) $ of an extended soft topological space $ (X, \tau, E) $ is soft $ \alpha $-open if and only if each e-approximate element of $ (F, E) $ is $ \alpha $-open.
Proposition 2.27. [13] Let $ \{(X_i, \tau_i, E): i\in I\} $ be a family of pairwise disjoint soft topological spaces and $ X = \bigcup_{i\in I}X_i $. Then the collection
$\tau = \{(G, E)\widetilde{\subseteq}\widetilde{X}: (G, E)\widetilde{\bigcap}\widetilde{X_i}\; is\; a\; soft\; open \;set \;in\; (X_i, \tau_i, E) \;for\; every\; i\in I\}$ |
defines a soft topology on $ X $ with a fixed set of parameters $ E $.
Definition 2.28. [13] The soft topological space $ (X, \tau, E) $ given in the above proposition is said to be the sum of soft topological spaces and is denoted by $ (\oplus_{i\in I}X_i, \tau, E) $.
Theorem 2.29. [13] A soft set $ (G, E)\widetilde{\subseteq}\widetilde{\oplus_{i\in I}X_i} $ is soft $ \alpha $-open (resp. soft $ \alpha $-closed) in $ (\oplus_{i\in I}X_i, \tau, E) $ if and only if all $ (G, E)\widetilde{\bigcap}\widetilde{X_i} $ are soft $ \alpha $-open (resp. soft $ \alpha $-closed) in $ (X_i, \tau_i, E) $.
Proposition 2.30. [36] Let $ g_\varphi:(X, \tau, E)\rightarrow (X, \tau, E) $ be a soft map such that $ \widetilde{\bigcap}_{n\in \mathbb{N}}g^n_\varphi(\widetilde{X}) $ is a soft point $ P^x_e $. Then $ P^x_e $ is a unique fixed point of $ g_\varphi $.
Theorem 2.31. [38] Let $ (X, \tau, A) $ and $ (Y, \theta, B) $ be two soft topological spaces and $ \Omega = \{G_A\times F_B: G_A\in\tau $ and $ F_B\in\theta\} $. Then the family of all arbitrary union of elements of $ \Omega $ is a soft topology over $ X\times Y $ under a fixed set of parameters $ A\times B $.
Lemma 2.32. [7] Let $ (G, A) $ and $ (H, B) $ be two subsets of $ (X_1, \tau_1, A) $ and $ (X_2, \tau_2, B) $, respectively. Then:
(ⅰ) $ cl(G, A)\times cl(H, B) = cl((G, A)\times (H, B)) $.
(ⅱ) $ int(G, A)\times int(H, B) = int((G, A)\times (H, B)) $.
This section introduces the concepts of $ tt $-soft $ \alpha T_i \; (i = 0, 1, 2, 3, 4) $ and $ tt $-soft $ \alpha $-regular spaces, where $ tt $ denote the total belong and total non-belong relations that are utilized in the definitions of these concepts. The relationships between them are showed and their main features are studied. In addition, their behaviours with the concepts of hereditary, topological and additive properties are investigated. Some examples are provided to elucidate the obtained results.
Definition 3.1. $ (X, \tau, E) $ is said to be:
(ⅰ) $ tt $-soft $ \alpha T_0 $ if for every $ x\neq y \in X $, there exists a soft $ \alpha $-open set $ U_E $ such that $ x\in U_E $ and $ y\not\Subset U_E $ or $ y\in U_E $ and $ x\not\Subset U_E $.
(ⅱ) $ tt $-soft $ \alpha T_1 $ if for every $ x\neq y \in X $, there exist soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in U_E $ and $ y\not\Subset U_E $; and $ y\in V_E $ and $ x\not\Subset V_E $.
(ⅲ) $ tt $-soft $ \alpha T_2 $ if for every $ x\neq y \in X $, there exist two disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in U_E $ and $ y\not\Subset U_E $; and $ y\in V_E $ and $ x\not\Subset V_E $.
(ⅳ) $ tt $-soft $ \alpha $-regular if for every soft $ \alpha $-closed set $ H_E $ and $ x\in X $ such that $ x\not\Subset H_E $, there exist disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ H_E\widetilde{\subseteq} U_E $ and $ x\in V_E $.
(ⅴ) $ tt $-soft $ \alpha T_3 $ (resp. $ tt $-soft $ \alpha T_4 $) if it is both $ tt $-soft $ \alpha $-regular (resp. soft $ \alpha $-normal) and $ tt $-soft $ \alpha T_1 $.
Remark 3.2. It can be noted that: If $ F_E $ and $ G_E $ are disjoint soft set, then $ x\in F_E $ if and only if $ x\not\Subset G_E $. This implies that $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_2 $-space if and only if is a soft $ \alpha T_2 $-space. That is, the concepts of a $ tt $-soft $ \alpha T_2 $-space and a soft $ \alpha T_2 $-space are equivalent.
We can say that: $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_2 $ if for every $ x\neq y \in X $, there exist two disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ totally contain $ x $ and $ y $, respectively.
Remark 3.3. The soft $ \alpha $-regular spaces imply a strict condition on the shape of soft $ \alpha $-open and soft $ \alpha $-closed subsets. To explain this matter, let $ F_E $ be a soft $ \alpha $-closed set such that $ x\not\in H_E $. Then we have two cases:
(ⅰ) There are $ e, e'\in E $ such that $ x\not\in H(e) $ and $ x\in H(e') $. This case is impossible because there do not exist two disjoint soft sets $ U_{E} $ and $ V_{E} $ containing $ x $ and $ H_E $, respectively.
(ⅱ) For each $ e\in E $, $ x\not\in H(e) $. This implies that $ H_E $ must be stable.
As a direct consequence, we infer that every soft $ \alpha $-closed and soft $ \alpha $-open subsets of a soft $ \alpha $-regular space must be stable. However, this matter does not hold on the $ tt $-soft $ \alpha $-regular spaces because we replace a partial non-belong relation by a total non-belong relation. Therefore a $ tt $-soft $ \alpha $-regular space need not be stable.
Proposition 3.4. (ⅰ) Every $ tt $-soft $ \alpha T_i $-space is soft $ \alpha T_{i} $ for $ i = 0, 1, 4 $.
(ⅱ) Every soft $ \alpha $-regular space is $ tt $-soft $ \alpha $-regular.
(ⅲ) Every soft $ \alpha T_3 $-space is $ tt $-soft $ \alpha T_{3} $.
Proof. The proofs of (ⅰ) and (ⅱ) follow from the fact that a total non-belong relation $ \not\Subset $ implies a partial non-belong relation $ \not\in $.
To prove (ⅲ), it suffices to prove that a soft $ \alpha T_{i} $-space is $ tt $-soft $ \alpha T_i $ when $ (X, \tau, E) $ is soft $ \alpha $-regular. Suppose $ x\neq y\in X $. Then there exist two soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in U_E $ and $ y\not\in U_E $; and $ y\in V_E $ and $ x\not\in V_E $. Since $ U_E $ and $ V_E $ are soft $ \alpha $-open subsets of a soft $ \alpha $-regular space, then they are stable. So $ y\not\Subset U_E $ and $ x\not\Subset V_E $. Thus $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_1 $. Hence, we obtain the desired result.
To clarify that the converse of the above proposition does not hold in general, we give the following examples.
Example 3.5. Let $ E = \{e_1, e_2\} $ and $ \tau = \{\widetilde{\Phi}, \widetilde{X}, G_{i_E}: i = 1, 2, 3\} $ be a soft topology on $ X = \{x, y\} $, where
$ G_{1_E} = \{(e_1, \{x\}), (e_2, X)\} ;\\ G_{2_E} = \{(e_1, X), (e_2, \{y\})\}\; and\\ G_{3_E} = \{(e_1, \{x\}), (e_2, \{y\})\} . $ |
One can examine that $ \tau = \tau^{\alpha} $. Then $ (X, \tau, E) $ is a soft $ \alpha T_1 $-space. On the other hand, it is not $ tt $-soft $ \alpha T_0 $ because there does not exist a soft $ \alpha $-open set containing one of the points $ x $ or $ y $ such that the other point does not totally belong to it.
Example 3.6. Let $ E = \{e_1, e_2\} $ and $ \tau = \{\widetilde{\Phi}, \widetilde{X}, G_{i_E}: i = 1, 2, ..., 8\} $ be a soft topology on $ X = \{x, y\} $, where
$ G_{1_E} = \{(e_1, X), (e_2, \{x\})\} ;\\ G_{2_E} = \{(e_1, \emptyset), (e_2, \{y\})\} ;\\ G_{3_E} = \{(e_1, \{y\}), (e_2, \emptyset)\} ;\\ G_{4_E} = \{(e_1, \{y\}), (e_2, \{y\})\} ;\\ G_{5_E} = \{(e_1, \{x\}), (e_2, \{y\})\} ;\\ G_{6_E} = \{(e_1, X), (e_2, \{y\})\} ; \\ G_{7_E} = \{(e_1, \{x\}), (e_2, \emptyset)\} \; and\\ G_{8_E} = \{(e_1, X), (e_2, \emptyset)\} . $ |
By calculating, we find that $ \tau^{\alpha} = \tau $.
Then $ (X, \tau, E) $ is a soft $ \alpha T_4 $-space. On the other hand, there does not exist a soft $ \alpha $-open set totally containing $ x $ such that $ y $ does not totally belong to it. So $ (X, \tau, E) $ is not a $ tt $-soft $ \alpha T_1 $-space, hence it is not $ tt $-soft $ \alpha T_4 $.
Example 3.7. Let $ X $ be any universal set $ X $ and $ E $ be any set of parameters such that $ |X|\geq 2 $ and $ |E|\geq 2 $. The discrete soft topology $ (X, \tau, E) $ is a $ tt $-soft $ \alpha $-regular space, but it is not soft $ \alpha $-regular. Hence, it is a $ tt $-soft $ \alpha T_{3} $-space, but it is not soft $ \alpha T_3 $.
Before we show the relationship between $ tt $-soft $ \alpha T_i $-spaces, we need to prove the following useful lemma.
Lemma 3.8. $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_1 $-space if and only if $ x_E $ is soft $ \alpha $-closed for every $ x\in X $.
Proof. Necessity: For each $ y_i\in X\backslash\{x\} $, there is a soft $ \alpha $-open set $ G_{i_E} $ such that $ y_i\in G_{i_E} $ and $ x\not\Subset G_{i_E} $. Therefore $ X\backslash\{x\} = \bigcup_{i\in I} G_i(e) $ and $ x\not\Subset\bigcup_{i\in I} G_i(e) $ for each $ e\in E $. Thus $ \widetilde{\bigcup}_{i\in I}G_{i_E} = \widetilde{X\backslash\{x\}} $ is soft $ \alpha $-open. Hence, $ x_E $ is soft $ \alpha $-closed.
Sufficiency: Let $ x\neq y $. By hypothesis, $ x_E $ and $ y_E $ are soft $ \alpha $-closed sets. Then $ x^c_E $ and $ y^c_E $ are soft $ \alpha $-open sets such that $ x\in(y_E)^c $ and $ y\in(x_E)^c $. Obviously, $ y\not\Subset(y_E)^c $ and $ x\not\Subset(x_E)^c $. Hence, $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_1 $.
Proposition 3.9. Every $ tt $-soft $ \alpha T_i $-space is $ tt $-soft $ \alpha T_{i-1} $ for $ i = 1, 2, 3, 4 $.
Proof. We prove the proposition in the cases of $ i = 3, 4 $. The other cases follow similar lines.
For $ i = 3 $, let $ x\neq y $ in a $ tt $-soft $ \alpha T_3 $-space $ (X, \tau, E) $. Then $ x_E $ is soft $ \alpha $-closed. Since $ y\not\Subset x_E $ and $ (X, \tau, E) $ is $ tt $-soft $ \alpha $-regular, then there are disjoint soft $ \alpha $-open sets $ G_E $ and $ F_E $ such that $ x_E\widetilde{\subseteq} G_E $ and $ y\in F_E $. Therefore $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_2 $.
For $ i = 4 $, let $ x\in X $ and $ H_E $ be a soft $ \alpha $-closed set such that $ x\not\Subset H_E $. Since $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_{1} $, then $ x_E $ is soft $ \alpha $-closed. Since $ x_E\widetilde{\bigcap}H_E = \widetilde{\Phi} $ and $ (X, \tau, E) $ is soft $ \alpha $-normal, then there are disjoint soft $ \alpha $-open sets $ G_E $ and $ F_E $ such that $ H_E\widetilde{\subseteq}G_E $ and $ x_E\widetilde{\subseteq} F_E $. Hence, $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_{3} $.
The following examples show that the converse of the above proposition is not always true.
Example 3.10. Let $ (X, \tau, E) $ be a soft topological space given in Example (3.6). For $ x\neq y $, we have $ G_{4_E} $ is a soft $ \alpha $-open set such that $ y\in G_{4_E} $ and $ x\not\Subset G_{4_E} $. Then $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_{0} $. However, it is not $ tt $-soft $ \alpha T_{1} $ because there does not exist a soft $ \alpha $-open set totally containing $ x $ and does not totally contain $ y $.
Example 3.11. Let $ E $ be any set of parameters and $ \tau = \{\widetilde{\Phi}, G_E\widetilde{\subseteq} \mathbb{N}: G^c_E $ is finite$ \} $ be a soft topology on the set of natural numbers $ \mathbb{N} $. It is clear that a soft subset of $ (\mathbb{N}, \tau, E) $ is soft $ \alpha $-open if and only if it is soft open. For each $ x\neq y\in \mathbb{N} $, we have $ \widetilde{\mathbb{N}\setminus\{y\}} $ and $ \widetilde{\mathbb{N}\setminus\{x\}} $ are soft $ \alpha $-open sets such that $ x\in\widetilde{\mathbb{N}\setminus\{y\}} $ and $ y\not\Subset\widetilde{\mathbb{N}\setminus\{y\}} $; and $ y\in\widetilde{\mathbb{N}\setminus\{x\}} $ and $ x\not\Subset\widetilde{\mathbb{N}\setminus\{x\}} $. Therefore $ (\mathbb{N}, \tau, E) $ is $ tt $-soft $ \alpha T_{1} $. On the other hand, there do not exist two disjoint soft $ \alpha $-open sets except for the null and absolute soft sets. Hence, $ (\mathbb{N}, \tau, E) $ is not $ tt $-soft $ \alpha T_{2} $.
Example 3.12. It is well known that a soft topological space is a classical topological space if $ E $ is a singleton. Then it suffices to consider examples that satisfy an $ \alpha T_{2} $-space but not $ \alpha T_{3} $; satisfy an $ \alpha T_{3} $-space but not $ \alpha T_{4} $.
In what follows, we establish some properties of $ tt $-soft $ \alpha T_i $ and $ tt $-soft $ \alpha $-regular.
Lemma 3.13. Let $ U_E $ be a subset of $ (X, \tau, E) $ and $ x\in X $. Then $ x\not\Subset\overline{U_E}^{\alpha} $ iff there exists a soft $ \alpha $-open set $ V_E $ totally containing $ x $ such that $ U_E\widetilde{\bigcap} V_E = \widetilde{\Phi} $.
Proof. Let $ x\not\Subset\overline{U_E}^{\alpha} $. Then $ x\in (\overline{U_E}^{\alpha})^c = V_E $. So $ U_E\widetilde{\bigcap}V_E = \widetilde{\Phi} $. Conversely, if there exists a soft $ \alpha $-open set $ V_E $ totally containing $ x $ such that $ U_E\widetilde{\bigcap}V_E = \widetilde{\Phi} $, then $ U_E\subseteq V^c_E $. Therefore $ \overline{U_E}^{\alpha}\subseteq V^c_E $. Since $ x\not\Subset V^c_E $, then $ x\not\Subset\overline{U_E}^{\alpha} $.
Proposition 3.14. If $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_0 $-space, then $ \overline{x_E}^{\alpha}\neq \overline{y_E}^{\alpha} $ for every $ x\neq y \in X $.
Proof. Let $ x\neq y $ in a $ tt $-soft $ \alpha T_0 $-space. Then there is a soft $ \alpha $-open set $ U_E $ such that $ x\in U_E $ and $ y\not\Subset U_E $ or $ y\in U_E $ and $ x\not\Subset U_E $. Say, $ x\in U_E $ and $ y\not\Subset U_E $. Now, $ y_E\widetilde{\bigcap}U_E = \widetilde{\Phi} $. So, by the above lemma, $ x\not\Subset \overline{y_E}^{\alpha} $. But $ x\in \overline{x_E}^{\alpha} $. Hence, we obtain the desired result.
Corollary 3.15. If $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_0 $-space, then $ \overline{P^x_{e}}^{\alpha}\neq \overline{P^y_{e'}}^{\alpha} $ for all $ x\neq y $ and $ e, e' \in E $.
Theorem 3.16. Let $ E $ be a finite set. Then $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_1 $-space if and only if $ x_E = \widetilde{\bigcap}\{U_{E}: x\in U_{E}\in \tau^{\alpha}\} $ for each $ x\in X $.
Proof. To prove the "if" part, let $ y\in X $. Then for each $ x\in X\setminus\{y\} $, we have a soft $ \alpha $-open set $ U_{E} $ such that $ x\in U_{E} $ and $ y\not\Subset U_{E} $. Therefore $ y\not\Subset\widetilde{\bigcap}\{U_{E}:x_E \widetilde{\subseteq} U_{E}\in \tau^{\alpha}\} $. Since $ y $ is chosen arbitrary, then the desired result is proved.
To prove the "only if" part, let the given conditions be satisfied and let $ x\neq y $. Let $ \mid E\mid = m $. Since $ y\not\Subset x_E $, then for each $ j = 1, 2, ..., m $ there is a soft $ \alpha $-open set $ U_{i_E} $ such that $ y\not\in U_{i}(e_j) $ and $ x\in U_{{i}_E} $. Therefore $ \widetilde{\bigcap}_{i = 1}^{m} U_{{i}_E} $ is a soft $ \alpha $-open set such that $ y\not\Subset\widetilde{\bigcap}_{i = 1}^{m} U_{{i}_E} $ and $ x\in\widetilde{\bigcap}_{i = 1}^{m} U_{{i}_E} $. Similarly, we can get a soft $ \alpha $-open set $ V_E $ such that $ y\in V_E $ and $ x\not\Subset V_E $. Thus $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_1 $-space.
Theorem 3.17. If $ (X, \tau, E) $ is an extended $ tt $-soft $ \alpha T_1 $-space, then $ P^x_e $ is soft $ \alpha $-closed for all $ P^x_e\in \widetilde{X} $.
Proof. It follows from Lemma (3.8) that $ \widetilde{X\backslash \{x\}} $ is a soft $ \alpha $-open set. Since $ (X, \tau, E) $ is extended, then a soft set $ H_E $, where $ H(e) = \emptyset $ and $ H(e') = X $ for each $ e'\neq e $, is a soft $ \alpha $-open set. Therefore $ \widetilde{X\backslash \{x\}}\widetilde{\bigcup} H_E $ is soft $ \alpha $-open. Thus $ (\widetilde{X\backslash \{x\}}\widetilde{\bigcup} H_E)^c = P^x_{e} $ is soft $ \alpha $-closed.
Corollary 3.18. If $ (X, \tau, E) $ is an extended $ tt $-soft $ \alpha T_1 $-space, then the intersection of all soft $ \alpha $-open sets containing $ U_E $ is exactly $ U_E $ for each $ U_E \widetilde{\subseteq}\widetilde{X} $.
Proof. Let $ U_E $ be a soft subset of $ \widetilde{X} $. Since $ P^x_e $ is a soft $ \alpha $-closed set for every $ P^x_e\in U^c_E $, then $ \widetilde{X}\setminus P^x_e $ is a soft $ \alpha $-open set containing $ U_E $. Therefore $ U_E = \widetilde{\bigcap}\{\widetilde{X}\setminus P^x_e: P^x_e\in U^c_E\} $, as required.
Theorem 3.19. A finite $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_2 $ if and only if it is $ tt $-soft $ \alpha T_1 $.
Proof. Necessity: It is obtained from Proposition (3.9).
Sufficiency: For each $ x\neq y $, we have $ x_E $ and $ y_E $ are soft $ \alpha $-closed sets. Since $ X $ is finite, then $ \widetilde{\bigcup}_{y\in X\backslash \{x\}} y_E $ and $ \widetilde{\bigcup}_{x\in X\backslash \{y\}} x_E $ are soft $ \alpha $-closed sets. Therefore $ (\widetilde{\bigcup}_{y\in X\backslash\{x\}}y_E)^c = x_E $ and $ (\widetilde{\bigcup}_{x\in X\backslash\{y\}} x_E)^c = y_E $ are disjoint soft $ \alpha $-open sets. Thus $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_2 $-space.
Corollary 3.20. A finite $ tt $-soft $ \alpha T_1 $-space is soft $ \alpha $-disconnected.
Remark 3.21. In Example (3.11), note that $ x_E $ is not a soft $ \alpha $-open set for each $ x\in \mathbb{N} $. This clarifies that a soft set $ x_E $ in a $ tt $-soft $ \alpha T_1 $-space need not be soft $ \alpha $-open if the universal set is infinite.
Theorem 3.22. $ (X, \tau, E) $ is $ tt $-soft $ \alpha $-regular iff for every soft $ \alpha $-open subset $ F_E $ of $ (X, \tau, E) $ totally containing $ x $, there is a soft $ \alpha $-open set $ V_E $ such that $ x\in V_E \widetilde{\subseteq}\overline{V_E}^{\alpha} \widetilde{\subseteq} F_E $.
Proof. Let $ x\in X $ and $ F_E $ be a soft $ \alpha $-open set totally containing $ x $. Then $ F^c_E $ is $ \alpha $-soft closed and $ x_E\widetilde{\bigcap}F^c_E = \widetilde{\Phi} $. Therefore there are disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ F^c_E\widetilde{\subseteq}U_ E $ and $ x\in V_E $. Thus $ V_E\widetilde{\subseteq} U^c_E\widetilde{\subseteq} F_E $. Hence, $ \overline{V_E}^{\alpha}\widetilde{\subseteq} U^c_E\widetilde{\subseteq} F_E $. Conversely, let $ F^c_E $ be a soft $ \alpha $-closed set. Then for each $ x\not\Subset F^c_E $, we have $ x\in F_E $. By hypothesis, there is a soft $ \alpha $-open set $ V_E $ totally containing $ x $ such that $ \overline{V_E}^{\alpha}\widetilde{\subseteq} F_E $. Therefore $ F^c_E\widetilde{\subseteq} (\overline{V_E}^{\alpha})^c $ and $ V_E\widetilde{\bigcap}(\overline{V_E}^{\alpha})^c = \widetilde{\Phi} $. Thus $ (X, \tau, E) $ is $ tt $-soft $ \alpha $-regular, as required.
Theorem 3.23. The following properties are equivalent if $ (X, \tau, E) $ is a $ tt $-soft $ \alpha $-regular space.
(ⅰ) a $ tt $-soft $ \alpha T_2 $-space.
(ⅱ) a $ tt $-soft $ \alpha T_1 $-space.
(ⅲ) a $ tt $-soft $ \alpha T_0 $-space.
Proof. The directions $ {\bf{(i)}}\rightarrow {\bf{(ii)}} $ and $ {\bf{(ii)}}\rightarrow{\bf{(iii)}} $ are obvious.
To prove $ {\bf{(iii)}}\rightarrow {\bf{(i)}} $, let $ x\neq y $ in a $ tt $-soft $ \alpha T_0 $-space $ (X, \tau, E) $. Then there exists a soft $ \alpha $-open set $ G_E $ such that $ x\in G_E $ and $ y\not\Subset G_E $, or $ y\in G_E $ and $ x\not\Subset G_E $. Say, $ x\in G_E $ and $ y\not\Subset G_E $. Obviously, $ x\not\Subset G^c_E $ and $ y\in G^c_E $. Since $ (X, \tau, E) $ is $ tt $-soft $ \alpha $-regular, then there exist two disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in U_E $ and $ y\in G^c_E\widetilde{\subseteq} V_E $. Hence, $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_2 $.
Proposition 3.24. A finite $ tt $-soft $ \alpha T_{2} $-space $ (X, \tau, E) $ is $ tt $-soft $ \alpha $-regular.
Proof. Let $ H_E $ be a soft $ \alpha $-closed set and $ x\in X $ such that $ x\not\Subset H_E $. Then $ x\neq y $ for each $ y\Subset H_E $. By hypothesis, there are two disjoint soft $ \alpha $-open sets $ U_{i_E} $ and $ V_{i_E} $ such that $ x\in U_{i_E} $ and $ y\in V_{i_E} $. Since $ \{y:y\in X\} $ is a finite set, then there is a finite number of soft $ \alpha $-open sets $ V_{i_E} $ such that $ H_E\widetilde{\subseteq}\widetilde{\bigcup}_{i = 1}^{m}V_{i_E} $. Now, $ \widetilde{\bigcap}_{i = 1}^{m} U_{i_E} $ is a soft $ \alpha $-open set containing $ x $ and $ [\widetilde{\bigcup}_{i = 1}^{m}V_{i_E} ]\widetilde{\bigcap}[\widetilde{\bigcap}_{i = 1}^{m}U_{i_E}] = \widetilde{\Phi} $. Hence, $ (X, \tau, E) $ is $ tt $-soft $ \alpha $-regular.
Corollary 3.25. The following properties are equivalent if $ (X, \tau, E) $ is finite.
(ⅰ) a $ tt $-soft $ \alpha T_{3} $-space.
(ⅱ) a $ tt $-soft $ \alpha T_{2} $-space.
(ⅲ) a $ tt $-soft $ \alpha T_{1} $-space.
Proof. The directions $ {\bf{(i)}}\rightarrow {\bf{(ii)}} $ and $ {\bf{(ii)}}\rightarrow {\bf{(iii)}} $ follow from Proposition (3.9).
The direction $ {\bf{(iii)}}\rightarrow {\bf{(ii)}} $ follows from Theorem (3.19).
The direction $ {\bf{(ii)}}\rightarrow {\bf{(i)}} $ follows from Proposition (3.24).
Theorem 3.26. The property of being a $ tt $-soft $ \alpha T_i $-space $ (i = 0, 1, 2, 3) $ is a soft open hereditary.
Proof. We prove the theorem in the case of $ i = 3 $ and the other cases follow similar lines.
Let $ (Y, \tau_Y, E) $ be a soft open subspace of a $ tt $-soft $ \alpha T_3 $-space $ (X, \tau, E) $. To prove that $ (Y, \tau_Y, E) $ is $ tt $-soft $ \alpha T_{1} $, let $ x\neq y \in Y $. Since $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_{1} $-space, then there exist two soft $ \alpha $-open sets $ G_E $ and $ F_E $ such that $ x\in G_E $ and $ y\not\Subset G_E $; and $ y\in F_E $ and $ x\not\Subset F_E $. Therefore $ x\in U_E = \widetilde{Y}\widetilde{\bigcap} G_E $ and $ y\in V_E = \widetilde{Y}\widetilde{\bigcap} F_E $ such that $ y\not\Subset U_E $ and $ x\not\Subset V_E $. It follows from Proposition (2.17), that $ U_E $ and $ V_E $ are soft $ \alpha $-open subsets of $ (Y, \tau_{Y}, E) $, so that $ (Y, \tau_Y, E) $ is $ tt $-soft $ \alpha T_{1} $.
To prove that $ (Y, \tau_Y, E) $ is $ tt $-soft $ \alpha $-regular, let $ y\in Y $ and $ F_E $ be a soft $ \alpha $-closed subset of $ (Y, \tau_Y, E) $ such that $ y\not\Subset F_E $. Then $ F_E\widetilde{\bigcup}\widetilde{Y^c} $ is a soft $ \alpha $-closed subset of $ (X, \tau, E) $ such that$ y\not\Subset F_E\widetilde{\bigcup}\widetilde{Y^c} $. Therefore there exist disjoint soft $ \alpha $-open subsets $ U_E $ and $ V_E $ of $ (X, \tau, E) $ such that $ F_E\widetilde{\bigcup}\widetilde{Y^c}\widetilde{\subseteq} U_E $ and $ y\in V_E $. Now, $ U_E\widetilde{\bigcap}\widetilde{Y} $ and $ V_E\widetilde{\bigcap}\widetilde{Y} $ are disjoint soft $ \alpha $-open subsets of $ (Y, \tau_{Y}, E) $ such that $ F_E\widetilde{\subseteq} U_E\widetilde{\bigcap}\widetilde{Y} $ and $ y\in V_E\widetilde{\bigcap}\widetilde{Y} $. Thus $ (Y, \tau_Y, E) $ is $ tt $-soft $ \alpha $-regular.
Hence, $ (Y, \tau_Y, E) $ is $ tt $-soft $ \alpha T_{3} $, as required.
Theorem 3.27. Let $ (X, \tau, E) $ be extended and $ i = 0, 1, 2, 3, 4 $. Then $ (X, \tau, E) $ is $ tt $-soft $ \alpha T_i $ iff $ (X, \tau_{e}) $ is $ \alpha T_i $ for each $ e\in E $.
Proof. We prove the theorem in the case of $ i = 4 $ and one can similarly prove the other cases.
Necessity: Let $ x\neq y $ in $ X $. Then there exist two soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in U_E $ and $ y\not\Subset U_E $; and $ y\in V_E $ and $ x\not\Subset V_E $. Obviously, $ x\in U(e) $ and $ y\not\in U(e) $; and $ y\in V(e) $ and $ x\not\in V(e) $. Since $ (X, \tau, E) $ is extended, then it follows from Theorem (2.26) that $ U(e) $ and $ V(e) $ are $ \alpha $-open subsets of $ (X, \tau_e) $ for each $ e\in E $. Thus, $ (X, \tau_e) $ is an $ \alpha T_1 $-space. To prove that $ (X, \tau_{e}) $ is $ \alpha $-normal, let $ F_e $ and $ H_e $ be two disjoint $ \alpha $-closed subsets of $ (X, \tau_{e}) $. Let $ F_E $ and $ H_E $ be two soft sets given by $ F(e) = F_e $, $ H(e) = H_e $ and $ F(e') = H(e') = \emptyset $ for each $ e'\neq e $. It follows, from Theorem (2.26) that $ F_E $ and $ H_E $ are two disjoint soft $ \alpha $-closed subsets of $ (X, \tau, E) $. By hypothesis, there exist two disjoint soft $ \alpha $-open sets $ G_E $ and $ W_E $ such that $ F_E\widetilde{\subseteq}G_E $ and $ H_E\widetilde{\subseteq}W_E $. This implies that $ F(e) = F_e\subseteq G(e) $ and $ H(e) = H_e\subseteq W(e) $. Since $ (X, \tau, E) $ is extended, then it follows from Theorem (2.26) that $ G(e) $ and $ W(e) $ are $ \alpha $-open subsets of $ (X, \tau_e) $. Thus, $ (X, \tau_e) $ is an $ \alpha $-normal space. Hence, it is an $ \alpha T_4 $-space.
Sufficiency: Let $ x\neq y $ in $ X $. Then there exists two $ \alpha $-open subsets $ U_e $ and $ V_e $ of $ (X, \tau_e) $ such that $ x\in U_e $ and $ y\not\in U_e $; and $ y\in V_e $ and $ x\not\in V_e $. Let $ U_E $ and $ V_E $ be two soft sets given by $ U(e) = U_e $, $ V(e) = V_e $ for each $ e\in E $. Since $ (X, \tau, E) $ is extended, then it follows from Theorem (2.26) that $ U_E $ and $ V_E $ are soft $ \alpha $-open subsets of $ (X, \tau, E) $ such that $ x\in U_E $ and $ y\not\Subset U_E $; and $ y\in V_E $ and $ x\not\Subset V_E $. Thus, $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_1 $-space. To prove that $ (X, \tau, E) $ is soft $ \alpha $-normal, let $ F_E $ and $ H_E $ be two disjoint soft $ \alpha $-closed subsets of $ (X, \tau, E) $. Since $ (X, \tau, E) $ is extended, then it follows from Theorem (2.26) that $ F(e) $ and $ H(e) $ are two disjoint $ \alpha $-closed subsets of $ (X, \tau_e) $. By hypothesis, there exist two disjoint $ \alpha $-open subsets $ G_e $ and $ W_e $ of $ (X, \tau_e) $ such that $ F(e)\subseteq G_e $ and $ H(e)\subseteq W_e $. Let $ G_E $ and $ W_E $ be two soft sets given by $ G(e) = G_e $ and $ W(e) = W_e $ for each $ e\in E $. Since $ (X, \tau, E) $ is extended, then it follows from Theorem (2.26) that $ G_E $ and $ W_E $ are two disjoint soft $ \alpha $-open subsets of $ (X, \tau, E) $ such that $ F_E\widetilde{\subseteq} G_E $ and $ H_E\widetilde{\subseteq} W_E $. Thus $ (X, \tau, E) $ is soft $ \alpha $-normal. Hence, it is a $ tt $-soft $ \alpha T_4 $-space.
In the following examples, we show that a condition of an extended soft topology given in the above theorem is not superfluous.
Example 3.28. Let $ E = \{e_1, e_2\} $ and $ \tau = \{\widetilde{\Phi}, \widetilde{X}, G_{1_E}, G_{2_E}\} $ be a soft topology on $ X = \{x, y\} $, where
$ G_{1_E} = \{(e_1, \{x\}), (e_2, \{y\})\} \;and \\ G_{2_E} = \{(e_1, \{y\}), (e_2, \{x\})\} . $ |
One can examine that $ \tau = \tau^{\alpha} $. It is clear that $ (X, \tau, E) $ is not a $ tt $-soft $ \alpha T_0 $-space. On the other hand, $ \tau_{e_1} $ and $ \tau_{e_2} $ are the discrete topology on $ X $. Hence, the two parametric topological spaces $ (X, \tau_{e_1}) $ and $ (X, \tau_{e_2}) $ are $ \alpha T_4 $.
Theorem 3.29. The property of being a $ tt $-soft $ \alpha T_i $-space $ (i = 0, 1, 2) $ is preserved under a finite product soft spaces.
Proof. We prove the theorem in case of $ i = 2 $. The other cases follow similar lines.
Let $ (X_1, \tau_1, E_1) $ and $ (X_2, \tau_2, E_2) $ be two $ tt $-soft $ \alpha T_2 $-spaces and let $ (x_1, y_1)\neq(x_2, y_2) $ in $ X_1\times X_2 $. Then $ x_1\neq x_2 $ or $ y_1\neq y_2 $. Without loss of generality, let $ x_1\neq x_2 $. Then there exist two disjoint soft $ \alpha $-open subsets $ G_{E_1} $ and $ H_{E_1} $ of $ (X_1, \tau_1, E_1) $ such that $ x_1\in G_{E_1} $ and $ x_2\not\Subset G_{E_1} $; and $ x_2\in H_{E_1} $ and $ x_1\not\Subset H_{E_1} $. Obviously, $ G_{E_1}\times\widetilde{X_2} $ and $ H_{E_1}\times\widetilde{X_2} $ are two disjoint soft $ \alpha $-open subsets $ X_1\times X_2 $ such that $ (x_1, y_1)\in G_{E_1}\times\widetilde{X_2} $ and $ (x_2, y_2)\not\Subset G_{E_1}\times\widetilde{X_2} $; and $ (x_2, y_2)\in H_{E_1}\times\widetilde{X_2} $ and $ (x_1, y_1)\not\Subset H_{E_1}\times\widetilde{X_2} $. Hence, $ X_1\times X_2 $ is a $ tt $-soft $ \alpha T_2 $-space.
Theorem 3.30. The property of being a $ tt $-soft $ \alpha T_i $-space is an additive property for $ i = 0, 1, 2, 3, 4 $.
Proof. To prove the theorem in the cases of $ i = 2 $. Let $ x\neq y\in \oplus_{i\in I}X_i $. Then we have the following two cases:
1. There exists $ i_0\in I $ such that $ x, y\in X_{i_0} $. Since $ (X_{i_0}, \tau_{i_0}, E) $ is $ tt $-soft $ \alpha T_2 $, then there exist two disjoint soft $ \alpha $-open subsets $ G_E $ and $ H_E $ of $ (X_{i_0}, \tau_{i_0}, E) $ such that $ x\in G_E $ and $ y\in H_E $. It follows from Theorem (2.29), that $ G_E $ and $ H_E $ are disjoint soft $ \alpha $-open subsets of $ (\oplus_{i\in I}X_i, \tau, E) $.
2. There exist $ i_0\neq j_0\in I $ such that $ x\in X_{i_0} $ and $ y\in X_{j_0} $. Now, $ \widetilde{X_{i_0}} $ and $ \widetilde{X_{j_0}} $ are soft $ \alpha $-open subsets of $ (X_{i_0}, \tau_{i_0}, E) $ and $ (X_{j_0}, \tau_{j_0}, E) $, respectively. It follows from Theorem (2.29), that $ \widetilde{X_{i_0}} $ and $ \widetilde{X_{j_0}} $ are disjoint soft $ \alpha $-open subsets of $ (\oplus_{i\in I} X_i, \tau, E) $.
It follows from the two cases above that $ (\oplus_{i\in I}X_i, \tau, E) $ is a $ tt $-soft $ \alpha T_2 $-space.
The theorem can be proved similarly in the cases of $ i = 0, 1 $.
To prove the theorem in the cases of $ i = 3 $ and $ i = 4 $, it suffices to prove the $ tt $-soft $ \alpha $-regularity and soft $ \alpha $-normality, respectively.
First, we prove the $ tt $-soft $ \alpha $-regularity property. Let $ F_E $ be a soft $ \alpha $-closed subset of $ (\oplus_{i\in I}X_i, \tau, E) $ such that $ x\not\Subset F_E $. It follows from Theorem (2.29) that $ F_E\widetilde{\bigcap}\widetilde{X_i} $ is soft $ \alpha $-closed in $ (X_i, \tau_i, E) $ for each $ i\in I $. Since $ x\in \oplus_{i\in I} X_i $, there is only $ i_0\in I $ such that $ x\in X_{i_0} $. This implies that there are disjoint soft $ \alpha $-open subsets $ G_E $ and $ H_E $ of $ (X_{i_0}, \tau_{i_0}, E) $ such that $ F_E\widetilde{\bigcap}\widetilde{X_{i_0}}\widetilde{\subseteq} G_E $ and $ y\in H_E $. Now, $ G_E\widetilde{\bigcup\limits_{i\neq i_0}}\widetilde{X_i} $ is a soft $ \alpha $-open subset of $ (\oplus_{i\in I}X_i, \tau, E) $ containing $ F_E $. The disjointness of $ G_E\bigcup_{i\neq i_0}X_i $ and $ H_E $ ends the proof that $ (\oplus_{i\in I}X_i, \tau, E) $ is a $ tt $-soft $ \alpha $-regular space.
Second, we prove the soft $ \alpha $-normality property. Let $ F_E $ and $ H_E $ be two disjoint soft $ \alpha $-closed subsets of $ (\oplus_{i\in I}X_i, \tau, E) $. It follows from Theorem (2.29) that $ F_E\widetilde{\bigcap}\widetilde{X_i} $ and $ H_E\widetilde{\bigcap}\widetilde{X_i} $ are soft $ \alpha $-closed in $ (X_i, \tau_i, E) $ for each $ i\in I $. Since $ (X_i, \tau_i, E) $ is soft $ \alpha $-normal for each $ i\in I $, then there there exist two disjoint soft $ \alpha $-open subsets $ U_{i_E} $ and $ V_{i_E} $ of $ (X_i, \tau_i, E) $ such that $ F_E\widetilde{\bigcap}\widetilde{X_i}\widetilde{\subseteq} U_{i_E} $ and $ H_E\widetilde{\bigcap}\widetilde{X_i}\widetilde{\subseteq} V_{i_E} $. This implies that $ F_E\widetilde{\subseteq}\widetilde{\bigcup\limits_{i\in I}}U_{i_E} $, $ H_E\widetilde{\subseteq}\widetilde{\bigcup\limits_{i\in I}} V_{i_E} $ and $ [\widetilde{\bigcup\limits_{i\in I}}U_{i_E}]\widetilde{\bigcap}[\widetilde{\bigcup\limits_{i\in I}} V_{i_E}] = \widetilde{\Phi} $. Hence, $ (\oplus_{i\in I}X_i, \tau, E) $ is a soft $ \alpha $-normal space.
In the following we probe the behaviours of $ tt $-soft $ \alpha T_i $-spaces under some soft maps.
Definition 3.31. A map $ f_{\varphi}:(X, \tau, A)\rightarrow (Y, \theta, B) $ is said to be:
1. soft $ \alpha^{\star} $-continuous if the inverse image of soft $ \alpha $-open set is soft $ \alpha $-open.
2. soft $ \alpha^{\star} $-open (resp. soft $ \alpha^{\star} $-closed) if the image of soft $ \alpha $-open (resp. soft $ \alpha $-closed) set is soft $ \alpha $-open (resp. soft $ \alpha $-closed).
3. soft $ \alpha^{\star} $-homeomorphism if it is bijective, soft $ \alpha^{\star} $-continuous and soft $ \alpha^{\star} $-open.
Proposition 3.32. Let $ f_{\varphi}:(X, \tau, A)\rightarrow (Y, \theta, B) $ be a soft $ \alpha $-continuous map such that $ f $ is injective. Then if $ (Y, \theta, B) $ is a $ p $-soft $ T_i $-space, then $ (X, \tau, A) $ is a $ tt $-soft $ \alpha T_i $-space for $ i = 0, 1, 2 $.
Proof. We only prove the proposition for $ i = 2 $.
Let $ f_{\varphi}:(X, \tau, A)\rightarrow (Y, \theta, B) $ be a soft $ \alpha $-continuous map and $ a\neq b\in X $. Since $ f $ is injective, then there are two distinct points $ x $ and $ y $ in $ Y $ such that $ f(a) = x $ and $ f(b) = y $. Since $ (Y, \theta, B) $ is a $ p $-soft $ T_2 $-space, then there are two disjoint soft open sets $ G_B $ and $ F_B $ such that $ x\in G_B $ and $ y\in F_B $. Now, $ f_{\varphi}^{-1}(G_B) $ and $ f_{\varphi}^{-1}(F_B) $ are two disjoint soft $ \alpha $-open subsets of $ (X, \tau, A) $ such that $ a\in f_{\varphi}^{-1}(G_B) $ and $ b\in f_{\varphi}^{-1}(F_B) $. Thus $ (X, \tau, A) $ is a $ tt $-soft $ \alpha T_2 $-space.
In a similar way, one can prove the following result.
Proposition 3.33. Let $ f_{\varphi}:(X, \tau, A)\rightarrow (Y, \theta, B) $ be a soft $ \alpha^{\star} $-continuous map such that $ f $ is injective. Then if $ (Y, \theta, B) $ is a $ tt $-soft $ \alpha T_i $-space, then $ (X, \tau, A) $ is a $ tt $-soft $ \alpha T_i $-space for $ i = 0, 1, 2 $.
Proposition 3.34. Let $ f_{\varphi}:(X, \tau, A)\rightarrow (Y, \theta, B) $ be a bijective soft $ \alpha $-open map. Then if $ (X, \tau, A) $ is a $ p $-soft $ T_i $-space, then $ (Y, \theta, B) $ is a $ tt $-soft $ \alpha T_i $-space for $ i = 0, 1, 2 $.
Proof. We only prove the proposition for $ i = 2 $.
Let $ f_{\varphi}:(X, \tau, A)\rightarrow (Y, \theta, B) $ be a soft $ \alpha $-open map and $ x\neq y\in Y $. Since $ f $ is bijective, then there are two distinct points $ a $ and $ b $ in $ X $ such that $ a = f^{-1}(x) $ and $ b = f^{-1}(y) $. Since $ (X, \tau, A) $ is a $ p $-soft $ T_2 $-space, then there are two disjoint soft open sets $ U_A $ and $ V_A $ such that $ x\in U_A $ and $ y\in V_A $. Now, $ f_{\varphi}(U_A) $ and $ f_{\varphi}(V_A) $ are two disjoint soft $ \alpha $-open subsets of $ (Y, \theta, B) $ such that $ x\in f_{\varphi}(U_A) $ and $ y\in f_{\varphi}(V_A) $. Thus $ (Y, \theta, B) $ is a $ tt $-soft $ \alpha T_2 $-space.
In a similar way, one can prove the following result.
Proposition 3.35. Let $ f_{\varphi}:(X, \tau, A)\rightarrow (Y, \theta, B) $ be a bijective soft $ \alpha^{\star} $-open map. Then if $ (X, \tau, A) $ is a $ tt $-soft $ \alpha T_i $-space, then $ (Y, \theta, B) $ is a $ tt $-soft $ \alpha T_i $-space for $ i = 0, 1, 2 $.
Proposition 3.36. The property of being $ tt $-soft $ \alpha T_i \; (i = 0, 1, 2, 3, 4) $ is preserved under a soft $ \alpha^{\star} $-homeomorphism map.
We complete this section by discussing some interrelations between $ tt $-soft $ \alpha T_i $-spaces $ (i = 2, 3, 4) $ and soft $ \alpha $-compact spaces.
Proposition 3.37. A stable soft $ \alpha $-compact subset of a $ tt $-soft $ \alpha T_2 $-space is soft $ \alpha $-closed.
Proof. It follows from Proposition (2.21) and Remark (3.2).
Theorem 3.38. Let $ H_E $ be a soft $ \alpha $-compact subset of a $ tt $-soft $ \alpha T_2 $-space. If $ x\not\Subset H_E $, then there are disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in U_E $ and $ H_E\subseteq V_E $.
Proof. Let $ x\not\Subset H_E $. Then $ x\neq y $ for each $ y\Subset H_E $. Since $ (X, \tau, E) $ is a $ tt $-soft $ \alpha T_2 $-space, then there exist disjoint soft $ \alpha $-open sets $ U_{i_E} $ and $ V_{i_E} $ such that $ x\in U_{i_E} $ and $ y\in V_{i_E} $. Therefore $ \{V_{i_E}\} $ forms a soft $ \alpha $-open cover of $ H_E $. Since $ H_E $ is soft $ \alpha $-compact, then $ H_E \subseteq\widetilde{\bigcup}_{i = 1}^{i = n}V_{i_E} $. By letting $ \widetilde{\bigcup}_{i = 1}^{i = n}V_{i_E} = V_E $ and $ \widetilde{\bigcap}_{i = 1}^{i = n}U_{i_E} = U_E $, we obtain the desired result.
Theorem 3.39. Every soft $ \alpha $-compact and $ tt $-soft $ \alpha T_2 $-space is $ tt $-soft $ \alpha $-regular.
Proof. Let $ H_E $ be a soft $ \alpha $-closed subset of soft $ \alpha $-compact and $ tt $-soft $ \alpha T_2 $-space $ (X, \tau, E) $ such that $ x\not\Subset H_E $. Then $ H_E $ is soft $ \alpha $-compact. By Theorem (3.38), there exist disjoint soft $ \alpha $-open sets $ U_E $ and $ V_E $ such that $ x\in U_E $ and $ H_E\subseteq V_E $. Thus, $ (X, \tau, E) $ is $ tt $-soft $ \alpha $-regular.
Corollary 3.40. Every soft $ \alpha $-compact and $ tt $-soft $ \alpha T_2 $-space is $ tt $-soft $ \alpha T_3 $.
Lemma 3.41. Let $ F_E $ be a soft $ \alpha $-open subset of a soft $ \alpha $-regular space. Then for each $ P^x_e\in F_E $, there exists a soft $ \alpha $-open set $ G_E $ such that $ P^x_e \in\overline{G_E}^{\alpha}\widetilde{\subseteq} F_E $.
Proof. Let $ F_E $ be a soft $ \alpha $-open set such that $ P^x_e \in F_E $. Then $ x\not\in F^c_E $. Since $ (X, \tau, E) $ is soft $ \alpha $-regular, then there exist two disjoint soft $ \alpha $-open sets $ G_E $ and $ W_E $ containing $ x $ and $ F^c_E $, respectively. Thus $ x\in G_E\widetilde{\subseteq} W^c_E\widetilde{\subseteq}F_E $. Hence, $ P^x_e\in G_E\widetilde{\subseteq}\overline{G_E}^{\alpha} \widetilde{\subseteq}W^c_E\widetilde{\subseteq}F_E $.
Theorem 3.42. Let $ H_E $ be a soft $ \alpha $-compact subset of a soft $ \alpha $-regular space and $ F_E $ be a soft $ \alpha $-open set containing $ H_E $. Then there exists a soft $ \alpha $-open set $ G_E $ such that $ H_E\widetilde{\subseteq}G_E \widetilde{\subseteq} \overline{G_E}^{\alpha}\widetilde{\subseteq}F_E $.
Proof. Let the given conditions be satisfied. Then for each $ P^x_e\in H_E $, we have $ P^x_e\in F_E $. Therefore there is a soft $ \alpha $-open set $ W_{{xe}_E} $ such that $ P^x_e\in W_{{xe}_E} \widetilde{\subseteq}\overline{W_{{xe}_E}}^{\alpha}\widetilde{\subseteq} F_E $. Now, $ \{W_{{xe}_E}:P^x_e\in F_E\} $ is a soft $ \alpha $-open cover of $ H_E $. Since $ H_E $ is soft $ \alpha $-compact, then $ H_E\widetilde{\subseteq}\widetilde{\bigcup}_{i = 1}^{i = n}W_{{xe}_E} $. Putting $ G_E = \widetilde{\bigcup}_{i = 1}^{i = n}W_{{xe}_E} $. Thus $ H_E\widetilde{\subseteq}G_E \widetilde{\subseteq} \overline{G_E}^{\alpha}\widetilde{\subseteq}F_E $.
Corollary 3.43. If $ (X, \tau, E) $ is soft $ \alpha $-compact and soft $ \alpha T_3 $, then it is $ tt $-soft $ \alpha T_4 $.
Proof. Suppose that $ F_{1_E} $ and $ F_{2_E} $ are two disjoint soft $ \alpha $-closed sets. Then $ F_{2_E} \widetilde{\subseteq}F^c_{1_E} $. Since $ (X, \tau, E) $ is soft $ \alpha $-compact, then $ F_{2_E} $ is soft $ \alpha $-compact and since $ (X, \tau, E) $ is soft $ \alpha $-regular, then there is a soft $ \alpha $-open set $ G_E $ such that $ F_{2_E}\widetilde{\subseteq}G_E \widetilde{\subseteq} \overline{G_E}^{\alpha}\widetilde{\subseteq}F^c_{1_E} $. Obviously, $ F_{2_E}\widetilde{\subseteq}G_E, F_{1_E}\widetilde{\subseteq}(\overline{G_E}^{\alpha})^c $ and $ G_E\widetilde{\bigcap}(\overline{G_E}^{\alpha})^c = \widetilde{\Phi} $. Thus $ (X, \tau, E) $ is soft $ \alpha $-normal. Since $ (X, \tau, E) $ is soft $ \alpha T_3 $, then it is $ tt $-soft $ \alpha T_1 $. Hence, it is $ tt $-soft $ \alpha T_4 $.
In this section, we investigate main features of an $ \alpha $-fixed soft point, in particular, those are related to parametric topological spaces.
Theorem 4.1. Let $ \{\mathcal{B}_n: n\in\mathbb{N}\} $ be a collection of soft subsets of a soft $ \alpha $-compact space $ (X, \tau, E) $ satisfying:
(ⅰ) $ \mathcal{B}_n\neq\widetilde{\Phi} $ for each $ n\in\mathbb{N} $;
(ⅱ) $ \mathcal{B}_n $ is a soft $ \alpha $-closed set for each $ n\in\mathbb{N} $;
(ⅲ) $ \mathcal{B}_{n+1}\widetilde{\subseteq}\mathcal{B}_{n} $ for each $ n\in\mathbb{N} $.
Then $ \widetilde{\bigcap}_{n\in \mathbb{N}}\mathcal{B}_{n}\neq \widetilde{\Phi} $.
Proof. Suppose that $ \widetilde{\bigcap}_{n\in \mathbb{N}}\mathcal{B}_{n} = \widetilde{\Phi} $. Then $ \widetilde{\bigcup}_{n\in \mathbb{N}}\mathcal{B}^c_{n} = \widetilde{X} $. It follows from (ii) that $ \{\mathcal{B}^c_n: n\in\mathbb{N}\} $ is a soft $ \alpha $-open cover of $ \widetilde{X} $. By hypothesis of soft $ \alpha $-compactness, there exist $ i_1, i_2, ..., i_k\in \mathbb{N} $, $ i_1 < i_2 < ... < i_k $ such that $ \widetilde{X} = \mathcal{B}^c_{i_1}\widetilde{\bigcup} \mathcal{B}^c_{i_2}\widetilde{\bigcup}... \widetilde{\bigcup}\mathcal{B}^c_{i_k} $. It follows from (iii) that $ \mathcal{B}_{i_k}\widetilde{\subseteq}\widetilde{X} = \mathcal{B}^c_{i_1} \widetilde{\bigcup} \mathcal{B}^c_{i_2}\widetilde{\bigcup}... \widetilde{\bigcup}\mathcal{B}^c_{i_k} = [\mathcal{B}_{i_1}\widetilde{\bigcap} \mathcal{B}_{i_2}\widetilde{\bigcap}... \widetilde{\bigcap}\mathcal{B}_{i_k}]^c = \mathcal{B}^c_{i_k} $. This yields a contradiction. Thus we obtain the proof that $ \widetilde{\bigcap}_{n\in \mathbb{N}}\mathcal{B}_{n}\neq \widetilde{\Phi} $.
To illustrate the above theorem, we give the following example
Example 4.2. As we mentioned that a soft topological space is a classical topological space if $ E = \{e\} $ is a singleton. Then we show the above theorem in the crisp setting. Let $ \tau = \mathbb{R}\bigcup\{G\subseteq\mathbb{R}:1\not\in \mathbb{R}\} $ be a (soft) topology on $ \mathbb{R} $ (it is called an excluding point topology). One can examined that $ (\mathbb{R}, \tau, E) $ is a soft $ \alpha $-compact space. Let $ \{\mathcal{M}_n: n\in\mathbb{N}\} $ be a collection of soft subsets of $ (\mathbb{R}, \tau, E) $ defined as follows: $ \mathcal{M}_n = \mathbb{N}\setminus\{2, ..., n+1\} $; that is $ \mathcal{M}_1 = \mathbb{N}\setminus\{2\} $, $ \mathcal{M}_2 = \mathbb{N}\setminus\{2, 3\} $, and so on. It is clear that $ \mathcal{M}_n $ satisfied the three conditions (i)-(iii) given in the above theorem. Now, $ 1\in \bigcap_{n\in \mathbb{N}}\mathcal{M}_{n} $, as required.
Proposition 4.3. Let $ (X, \tau, E) $ be a soft $ \alpha $-compact and soft $ \alpha T'_2 $-space and $ g_\varphi:(X, \tau, E)\rightarrow (X, \tau, E) $ be a soft $ \alpha^{\star} $-continuous map. Then there exists a unique soft point $ P^x_e\in \widetilde{X} $ of $ g_\varphi $.
Proof. Let $ \{\mathcal{B}_1 = g_\varphi(\widetilde{X}) $ and $ \mathcal{B}_n = g_\varphi(\mathcal{B}_{n-1}) = g^n_\varphi(\widetilde{X}) $ for each $ n\in\mathbb{N}\} $ be a family of soft subsets of $ (X, \tau, E) $. It is clear that $ \mathcal{B}_{n+1}\widetilde{\subseteq} \mathcal{B}_{n} $ for each $ n\in\mathbb{N} $. Since $ g_\varphi $ is soft $ \alpha^{\star} $-continuous, then $ \mathcal{B}_n $ is a soft $ \alpha $-compact set for each $ n\in\mathbb{N} $ and since $ (X, \tau, E) $ is soft $ \alpha T'_2 $, then $ \mathcal{B}_n $ is also a soft $ \alpha $-closed set for each $ n\in\mathbb{N} $. It follows from Theorem (4.1) that $ (H, E) = \widetilde{\bigcap}_{n\in\mathbb{N}} \mathcal{B}_n $ is a non null soft set. Note that $ g_\varphi(H, E) = g_\varphi(\widetilde{\bigcap}_{n\in\mathbb{N}}g^n_\varphi(\widetilde{X})) \widetilde{\subseteq} \widetilde{\bigcap}_{n\in\mathbb{N}}g^{n+1}_\varphi(\widetilde{X}) \widetilde{\subseteq} \widetilde{\bigcap}_{n\in\mathbb{N}}g^{n}_\varphi(\widetilde{X}) = (H, E) $. To show that $ (H, E)\widetilde{\subseteq} g_\varphi(H, E) $, suppose that there is a $ P^x_e\in (H, E) $ such that $ P^x_e\not\in g_\varphi(H, E) $. Let $ \mathcal{C}_n = g^{-1}_\varphi(P^x_e)\widetilde{\bigcap} \mathcal{B}_n $. Obviously, $ \mathcal{C}_n\neq\widetilde{\Phi} $ and $ \mathcal{C}_n\widetilde{\subseteq} \mathcal{C}_{n-1} $ for each $ n\in\mathbb{N} $. By Theorem (2.15), $ \mathcal{C}_n $ is a soft $ \alpha $-closed set for each $ n\in\mathbb{N} $; and by Theorem (4.1), there exists a soft point $ P^y_m $ such that $ P^y_m\in g^{-1}_\varphi(P^x_e) \widetilde{\bigcap} \mathcal{B}_n $. Therefore $ P^x_e = g_\varphi(P^y_m)\in g_\varphi(H, E) $. This is a contradiction. Thus, $ g_\varphi(H, E) = (H, E) $. Hence, the proof is complete.
Definition 4.4. (ⅰ) $ (X, \tau, E) $ is said to have an $ \alpha $-fixed soft point property if every soft $ \alpha^{\star} $-continuous map $ g_\varphi:(X, \tau, E)\rightarrow (X, \tau, E) $ has a fixed soft point.
(ⅱ) A property is said to be an $ \alpha^{\star} $-soft topological property if the property is preserved by soft $ \alpha^{\star} $-homeomorphism maps.
Proposition 4.5. The property of being an $ \alpha $-fixed soft point is an $ \alpha^{\star} $-soft topological property.
Proof. Let $ (X, \tau, E) $ and $ (Y, \theta, E) $ be a soft $ \alpha^{\star} $-homeomorphic. Then there is a bijective soft map $ f_\varphi:(X, \tau, E)\rightarrow (Y, \theta, E) $ such that $ f_\varphi $ and $ f^{-1}_\varphi $ are soft $ \alpha^{\star} $-continuous. Since $ (X, \tau, E) $ has an $ \alpha $-fixed soft point property, then every soft $ \alpha^{\star} $-continuous map $ g_\varphi:(X, \tau, E)\rightarrow (X, \tau, E) $ has an $ \alpha $-fixed soft point. Now, let $ h_\varphi:(Y, \theta, E)\rightarrow (Y, \theta, E) $ be a soft $ \alpha^{\star} $-continuous. Obviously, $ h_\varphi\circ f_\varphi:(X, \tau, E)\rightarrow (Y, \theta, E) $ is a soft $ \alpha^{\star} $-continuous. Also, $ f^{-1}_\varphi\circ h_\varphi\circ f_\varphi:(X, \tau, E)\rightarrow (X, \tau, E) $ is a soft $ \alpha^{\star} $-continuous. Since $ (X, \tau, E) $ has an $ \alpha $-fixed soft point property, then $ f^{-1}_\varphi(h_\varphi(f_\varphi(P^x_e))) = P^x_e $ for some $ P^x_e\in \widetilde{X} $. consequently, $ f_\varphi(f^{-1}_\varphi(h_\varphi(f_\varphi(P^x_e)))) = f_\varphi(P^x_e) $. This implies that $ h_\varphi(f_\varphi(P^x_e)) = f_\varphi(P^x_e) $. Thus $ f_\varphi(P^x_e) $ is an $ \alpha $-fixed soft point of $ h_\varphi $. Hence, $ (Y, \theta, E) $ has an $ \alpha $-fixed soft point property, as required.
Before we investigate a relationship between soft topological space and their parametric topological spaces in terms of possessing a fixed (soft) point, we need to prove the following result.
Theorem 4.6. Let $ \tau $ be an extended soft topology on $ X $. Then a soft map $ g_{\varphi}:(X, \tau, E)\rightarrow (Y, \theta, E) $ is soft $ \alpha^{\star} $-continuous if and only if a map $ g:(X, \tau_{e})\rightarrow (Y, \theta_{\phi(e)}) $ is $ \alpha^{\star} $-continuous.
Proof. Necessity: Let $ U $ be an $ \alpha $-open subset of $ (Y, \theta_{\phi(e)}) $. Then there exists a soft $ \alpha $-open subset $ G_E $ of $ (Y, \theta, E) $ such that $ G(\phi(e)) = U $. Since $ g_{\varphi} $ is a soft $ \alpha^{\star} $-continuous map, then $ g^{-1}_{\phi}(G_E) $ is a soft $ \alpha $-open set. From Definition (2.9), it follows that a soft subset $ g^{-1}_{\phi}(G_E) = (g^{-1}_{\phi}(G))_E $ of $ (X, \tau, E) $ is given by $ g^{-1}_{\phi}(G)(e) = g^{-1}(G(\phi(e))) $ for each $ e\in E $. By hypothesis, $ \tau $ is an extended soft topology on $ X $, we obtain from Theorem (2.26) that a subset $ g^{-1}(G(\phi(e))) = g^{-1}(U) $ of $ (X, \tau_{e}) $ is $ \alpha $-open. Hence, a map $ g $ is $ \alpha^{\star} $-continuous.
Sufficiency: Let $ G_E $ be a soft $ \alpha $-open subset of $ (Y, \theta, E) $. Then from Definition (2.9), it follows that a soft subset $ g^{-1}_{\phi}(G_E) = (g^{-1}_{\phi}(G))_E $ of $ (X, \tau, E) $ is given by $ g^{-1}_{\phi}(G)(e) = g^{-1}(G(\phi(e))) $ for each $ e\in E $. Since a map $ g $ is $ \alpha^{\star} $-continuous, then a subset $ g^{-1}(G(\phi(e))) $ of $ (X, \tau_{e}) $ is $ \alpha $-open. By hypothesis, $ \tau $ is an extended soft topology on $ X $, we obtain from Theorem (2.26) that $ g^{-1}_{\phi}(G_E) $ is a soft $ \alpha $-open subset of $ (X, \tau, E) $. Hence, a soft map $ g_{\varphi} $ is soft $ \alpha^{\star} $-continuous.
Definition 4.7. $ (X, \tau) $ is said to have an $ \alpha $-fixed point property if every $ \alpha^{\star} $-continuous map $ g:(X, \tau)\rightarrow (X, \tau) $ has a fixed point.
Proposition 4.8. $ (X, \tau, E) $ has the property of an $ \alpha $-fixed soft point iff $ (X, \tau_{e}) $ has the property of an $ \alpha $-fixed point for each $ e\in E $.
Proof. Necessity: Let $ (X, \tau, E) $ has the property of an $ \alpha $-fixed soft point. Then every soft $ \alpha^{\star} $-continuous map $ g_\varphi:(X, \tau, E)\rightarrow (X, \tau, E) $ has a fixed soft point. Say, $ P^x_e $. It follows from the above theorem that $ g_e:(X, \tau_{e})\rightarrow (X, \theta_{\phi(e)}) $ is $ \alpha^{\star} $-continuous. Since $ P^x_e $ is a fixed soft point of $ g_\varphi $, then it must be that $ g_e(x) = x $. Thus, $ g_e $ has a fixed point. Hence, we obtain the desired result.
Sufficiency: Let $ (X, \tau_{e}) $ has the property of an $ \alpha $-fixed point for each $ e\in E $. Then every $ \alpha^{\star} $-continuous map $ g_e:(X, \tau_{e})\rightarrow (X, \theta_{\phi(e)}) $ has a fixed point. Say, $ x $. It follows from the above theorem that $ g_{\varphi}:(X, \tau, E)\rightarrow (X, \theta, E) $ is soft $ \alpha^{\star} $-continuous. Since $ x $ is a fixed point of $ g_e $, then it must be that $ g_{\varphi}(P^x_e) = P^x_e $. Thus, $ g_{\varphi} $ has a fixed soft point. Hence, we obtain the desired result.
This work presents new types of soft separation axioms with respect to three factors:
(ⅰ) ordinary points.
(ⅱ) total belong and total non-belong relations.
(ⅲ) soft $ \alpha $-open sets.
We show the interrelationships between these soft separation axioms and investigate some properties. The main contributions of this work are the following:
(ⅰ) formulate new soft separation axioms, namely $ tt $-soft $ \alpha T_i (i = 0, 1, 2, 3, 4) $ and $ tt $-soft $ \alpha $-regular spaces.
(ⅱ) illustrate the relationships between them as well as with soft $ \alpha T_i (i = 0, 1, 2, 3, 4) $ and soft $ \alpha $-regular spaces.
(ⅲ) study the "transmission" of these soft separation axioms between soft topological space and its parametric topological spaces.
(ⅳ) give some conditions that guarantee the equivalence of $ tt $-soft $ \alpha T_i (i = 0, 1, 2) $ and the equivalence of $ tt $-soft $ \alpha T_i (i = 1, 2, 3) $.
(ⅴ) characterize some of these soft separation axioms such as $ tt $-soft $ \alpha T_1 $ and $ tt $-soft $ \alpha $-regular spaces
(ⅵ) explore the interrelations of some of these soft separation axioms and soft compact spaces.
(ⅶ) discuss the behaviours of these soft separation axioms with some notions such as product soft spaces and sum of soft topological spaces.
(ⅷ) define $ \alpha $-fixed soft point and establish fundamental properties.
Soft separation axioms are among the most widespread and important concepts in soft topology because they are utilized to classify the objects of study and to construct different families of soft topological spaces. In this work, we have introduced new soft separation axioms with respect to ordinary points by using total belong and total non-belong relations. This way of definition helps us to generalize existing comparable properties via general topology and to remove a strict condition of the shape of soft open and closed subsets of soft $ \alpha $-regular spaces. In general, we study their main properties and illustrate the interrelations between them and some soft topological notions such as soft compactness, product soft spaces and sum of soft topological spaces. We complete this work by defining $ \alpha $-fixed soft point theorem and investigating its basic properties.
We plan in the upcoming works to study the concepts and results presented herein by using some celebrated types of generalizations of soft open sets such as soft preopen, soft $ b $-open and soft $ \beta $-open sets. In addition, we will explore these concepts on some contents such as supra soft topology and fuzzy soft topology. In the end, we hope that the concepts initiated herein will find their applications in many fields soon.
The authors declare that they have no competing interests.
The authors would like to thank the referees for their valuable comments which help us to improve the manuscript.
[1] |
Knowles TP, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15: 384–396. doi: 10.1038/nrm3810
![]() |
[2] |
Hardy JA, Higgins GA (1992) Alzheimers disease-the amyloid cascade hyopothesis. Science 256: 184–185. doi: 10.1126/science.1566067
![]() |
[3] |
Arriagada PV, Growdon JH, Hedleywhyte ET, et al. (1992) Neurofibrillary tangles but not senile plaques parellel duration and severity of Alzheimers disease. Neurology 42: 631–639. doi: 10.1212/WNL.42.3.631
![]() |
[4] |
Terry RD, Masliah E, Salmon DP, et al. (1991) Physical basis of cognitve alterations in Alzheimers disease-synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580. doi: 10.1002/ana.410300410
![]() |
[5] |
Viola KL, Sbarboro J, Sureka R, et al. (2015) Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease. Nat Nanotechnol 10: 91–98. doi: 10.1038/nnano.2014.254
![]() |
[6] | Hyman B, Tanzi R (1992) Amyloid, dementia and Alzheimer's disease. Curr Opin Neurol Neurosur 5: 88–93. |
[7] |
Cummings BJ, Pike CJ, Shankle R, et al. (1996) b-Amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiol Aging 17: 921–933. doi: 10.1016/S0197-4580(96)00170-4
![]() |
[8] |
Cummings JL, Morstorf T, Zhong K (2014) Alzheimer's disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res Ther 6: 37. doi: 10.1186/alzrt269
![]() |
[9] |
Goure WF, Krafft GA, Jerecic J, et al. (2014) Targeting the proper amyloid-β neuronal toxins: A path forward for Alzheimer's disease immunotherapeutics. Alzheimers Res Ther 6: 42. doi: 10.1186/alzrt272
![]() |
[10] |
Karran E, Hardy J (2014) A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol 76: 185–205. doi: 10.1002/ana.24188
![]() |
[11] |
Karran E, Hardy J (2014) Antiamyloid therapy for Alzheimer's disease-are we on the right road? New Engl J Med 370: 377–378. doi: 10.1056/NEJMe1313943
![]() |
[12] |
Frackowiak J, Zoltowska A, Wisniewski HM (1994) Nonfibrillar β-amyloid protein is associated with smooth-muscle cells of vessel walls in Alzheimer disease. J Neuropath Exp Neur 53: 637–645. doi: 10.1097/00005072-199411000-00011
![]() |
[13] |
Oda T, Pasinetti GM, Osterburg HH, et al. (1994) Purification and characterization of brain clusterin. Biochem Bioph Res Co 204: 1131–1136. doi: 10.1006/bbrc.1994.2580
![]() |
[14] |
Oda T, Wals P, Osterburg HH, et al. (1995) Clusterin (apoJ) alters the aggregation of amyloid β peptide (Aβ(1-42)) and forms slowly sedimenting Aβ complexes that cuase oxidative stress. Exp Neurol 136: 22–31. doi: 10.1006/exnr.1995.1080
![]() |
[15] |
Esparza TJ, Zhao H, Cirrito JR, et al. (2013) Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol 73: 104–119. doi: 10.1002/ana.23748
![]() |
[16] |
Gong YS, Chang L, Viola KL, et al. (2003) Alzheimer's disease-affected brain: Presence of oligomeric A β ligands (ADDLs) suggests a molecular basis for reversible memory loss. P Natl Acad Sci USA 100: 10417–10422. doi: 10.1073/pnas.1834302100
![]() |
[17] |
Kayed R, Head E, Thompson JL, et al. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486–489. doi: 10.1126/science.1079469
![]() |
[18] |
Noguchi A, Matsumura S, Dezawa M, et al. (2009) Isolation and characterization of patient-derived, toxic, high mass amyloid β-protein (Aβ) assembly from Alzheimer disease brains. J Biol Chem 284: 32895–32905. doi: 10.1074/jbc.M109.000208
![]() |
[19] |
Pham E, Crews L, Ubhi K, et al. (2010) Progressive accumulation of amyloid-β oligomers in Alzheimer's disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 277: 3051–3067. doi: 10.1111/j.1742-4658.2010.07719.x
![]() |
[20] | Gyure KA, Durham R, Stewart WF, et al. (2001) Intraneuronal Aβ-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125: 489–492. |
[21] |
Lacor PN, Buniel MC, Chang L, et al. (2004) Synaptic targeting by Alzheimer's-related amyloid β oligomers. J Neurosci 24: 10191–10200. doi: 10.1523/JNEUROSCI.3432-04.2004
![]() |
[22] |
Lesne SE, Sherman MA, Grant M, et al. (2013) Brain amyloid-β oligomers in ageing and Alzheimer's disease. Brain 136: 1383–1398. doi: 10.1093/brain/awt062
![]() |
[23] |
Georganopoulou DG, Chang L, Nam JM, et al. (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. P Natl Acad Sci USA 102: 2273–2276. doi: 10.1073/pnas.0409336102
![]() |
[24] |
Bruggink KA, Jongbloed W, Biemans EALM, et al. (2013) Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue. Anal Biochem 433: 112–120. doi: 10.1016/j.ab.2012.09.014
![]() |
[25] |
Englund H, Gunnarsson MD, Brundin RM, et al. (2009) Oligomerization partially explains the lowering of Aβ42 in Alzheimer's disease cerebrospinal fluid. Neurodegener Dis 6: 139–147. doi: 10.1159/000225376
![]() |
[26] |
Fukumoto H, Tokuda T, Kasai T, et al. (2010) High-molecular-weight β-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 24: 2716–2726. doi: 10.1096/fj.09-150359
![]() |
[27] |
Gao CM, Yam AY, Wang X, et al. (2010) Aβ40 Oligomers identified as a potential biomarker for the diagnosis of Alzheimer's disease. PLoS One 5: e15725. doi: 10.1371/journal.pone.0015725
![]() |
[28] |
Herskovits AZ, Locascio JJ, Peskind ER, et al. (2013) A luminex assay detects amyloid-β oligomers in Alzheimer's disease cerebrospinal fluid. PLoS One 8: e67898. doi: 10.1371/journal.pone.0067898
![]() |
[29] |
Holtta M, Hansson O, Andreasson U, et al. (2013) Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer's disease. PLoS One 8: e66381. doi: 10.1371/journal.pone.0066381
![]() |
[30] |
Jongbloed W, Bruggink KA, Kester MI, et al. (2015) Amyloid-β oligomers relate to cognitive decline in Alzheimer's disease. J Alzheimers Dis 45: 35–43. doi: 10.3233/JAD-142136
![]() |
[31] |
Santos AN, Ewers M, Minthon L, et al. (2012) Amyloid-β oligomers in cerebrospinal fluid are associated with cognitive decline in patients with Alzheimer's disease. J Alzheimers Dis 29: 171–176. doi: 10.3233/JAD-2012-111361
![]() |
[32] |
Lesne S, Koh MT, Kotilinek L, et al. (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440: 352–357. doi: 10.1038/nature04533
![]() |
[33] |
Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid β-protein oligomers. P Natl Acad Sci USA 106: 14745–14750. doi: 10.1073/pnas.0905127106
![]() |
[34] |
Quist A, Doudevski L, Lin H, et al. (2005) Amyloid ion channels: A common structural link for protein-misfolding disease. P Natl Acad Sci USA 102: 10427–10432. doi: 10.1073/pnas.0502066102
![]() |
[35] |
Shankar GM, Bloodgood BL, Townsend M, et al. (2007) Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27: 2866–2875. doi: 10.1523/JNEUROSCI.4970-06.2007
![]() |
[36] |
Shankar GM, Li S, Mehta TH, et al. (2008) Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14: 837–842. doi: 10.1038/nm1782
![]() |
[37] |
Townsend M, Shankar GM, Mehta T, et al. (2006) Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: A potent role for trimers. J Physiol 572: 477–492. doi: 10.1113/jphysiol.2005.103754
![]() |
[38] |
Lambert MP, Barlow AK, Chromy BA, et al. (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. P Natl Acad Sci USA 95: 6448–6453. doi: 10.1073/pnas.95.11.6448
![]() |
[39] |
Walsh DM, Klyubin I, Fadeeva JV, et al. (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535–539. doi: 10.1038/416535a
![]() |
[40] |
Zhao J, Li A, Rajsombath M, et al. (2018) Soluble Aβ Oligomers Impair Dipolar Heterodendritic Plasticity by Activation of mGluR in the Hippocampal CA1 Region. iScience 6: 138–150. doi: 10.1016/j.isci.2018.07.018
![]() |
[41] |
De Felice FG, Wu D, Lambert MP, et al. (2008) Alzheimer's disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging 29: 1334–1347. doi: 10.1016/j.neurobiolaging.2007.02.029
![]() |
[42] |
Ma QL, Yang F, Rosario ER, et al. (2009) β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin. J Neurosci 29: 9078–9089. doi: 10.1523/JNEUROSCI.1071-09.2009
![]() |
[43] |
Resende R, Ferreiro E, Pereira C, et al. (2008) ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation. J Neurosci Res 86: 2091–2099. doi: 10.1002/jnr.21648
![]() |
[44] |
Tomiyama T, Matsuyama S, Iso H, et al. (2010) A mouse model of amyloid-β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30: 4845–4856. doi: 10.1523/JNEUROSCI.5825-09.2010
![]() |
[45] |
Zempel H, Thies E, Mandelkow E, et al. (2010) A Oligomers Cause Localized Ca2+ Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines. J Neurosci 30: 11938–11950. doi: 10.1523/JNEUROSCI.2357-10.2010
![]() |
[46] |
Heinitz K, Beck M, Schliebs R, et al. (2006) Toxicity mediated by soluble oligomers of β-amyloid(1‑42) on cholinergic SN56.B5.G4 cells. J Neurochem 98: 1930–1945. doi: 10.1111/j.1471-4159.2006.04015.x
![]() |
[47] |
Nunes-Tavares N, Santos LE, Stutz B, et al. (2012) Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-β peptide oligomers. J Biol Chem 287: 19377–19385. doi: 10.1074/jbc.M111.321448
![]() |
[48] |
De Felice FG, Velasco PT, Lambert MP, et al. (2007) Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282: 11590–11601. doi: 10.1074/jbc.M607483200
![]() |
[49] | Longo VD, Viola KL, Klein WL, et al. (2000) Reversible inactivation of superoxide-sensitive aconitase in Aβ1-42-treated neuronal cell lines. J Neurochem 75: 1977–1985. |
[50] |
Sponne I, Fifre A, Drouet B, et al. (2003) Apoptotic neuronal cell death induced by the non-fibrillar amyloid-β peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J Biol Chem 278: 3437–3445. doi: 10.1074/jbc.M206745200
![]() |
[51] |
Tabner BJ, El-Agnaf OMA, Turnbull S, et al. (2005) Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 280: 35789–35792. doi: 10.1074/jbc.C500238200
![]() |
[52] |
Alberdi E, Wyssenbach A, Alberdi M, et al. (2013) Ca2+-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer's disease. Aging Cell 12: 292–302. doi: 10.1111/acel.12054
![]() |
[53] |
Nishitsuji K, Tomiyama T, Ishibashi K, et al. (2009) The E693Δ mutation in amyloid precursor protein increases intracellular accumulation of amyloid β oligomers and causes endoplasmic reticulum stress-induced apoptosis in cultured cells. Am J Pathol 174: 957–969. doi: 10.2353/ajpath.2009.080480
![]() |
[54] |
Lacor PN, Buniel MC, Furlow PW, et al. (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 27: 796–807. doi: 10.1523/JNEUROSCI.3501-06.2007
![]() |
[55] |
Roselli F (2005) Soluble β-Amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 25: 11061–11070. doi: 10.1523/JNEUROSCI.3034-05.2005
![]() |
[56] |
Snyder EM, Nong Y, Almeida CG, et al. (2005) Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 8: 1051–1058. doi: 10.1038/nn1503
![]() |
[57] | Zhao WQ, De Felice FG, Fernandez S, et al. (2007) Amyloid β oligomers induce impairment of neuronal insulin receptors. FASEB J 22: 246–260. |
[58] |
De Felice FG, Vieira MN, Bomfim TR, et al. (2009) Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci USA 106: 1971–1976. doi: 10.1073/pnas.0809158106
![]() |
[59] |
Koffie RM, Meyer-Luehmann M, Hashimoto T, et al. (2009) Oligomeric amyloid-β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. P Natl Acad Sci USA 106: 4012–4017. doi: 10.1073/pnas.0811698106
![]() |
[60] |
Decker H, Lo KY, Unger SM, et al. (2010) Amyloid-Peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3 in primary cultured hippocampal neurons. J Neurosci 30: 9166–9171. doi: 10.1523/JNEUROSCI.1074-10.2010
![]() |
[61] |
Pigino G, Morfini G, Atagi Y, et al. (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid β. P Natl Acad Sci USA 106: 5907–5912. doi: 10.1073/pnas.0901229106
![]() |
[62] |
Poon WW, Blurton-Jones M, Tu CH, et al. (2011) β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 32: 821–833. doi: 10.1016/j.neurobiolaging.2009.05.012
![]() |
[63] |
Hu J, Akama KT, Krafft GA, et al. (1998) Amyloid-β peptide activates cultured astrocytes: Morphological alterations, cytokine induction and nitric oxide release. Brain Res 785: 195–206. doi: 10.1016/S0006-8993(97)01318-8
![]() |
[64] |
Jimenez S, Baglietto-Vargas D, Caballero C, et al. (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: Age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28: 11650–11661. doi: 10.1523/JNEUROSCI.3024-08.2008
![]() |
[65] |
Bhaskar K, Miller M, Chludzinski A, et al. (2009) The PI3K-Akt-mTOR pathway regulates a oligomer induced neuronal cell cycle events. Mol Neurodegener 4: 1–18. doi: 10.1186/1750-1326-4-1
![]() |
[66] |
Varvel NH, Bhaskar K, Patil AR, et al. (2008) Aβ oligomers induce neuronal cell cycle events in Alzheimer's disease. J Neurosci 28: 10786–10793. doi: 10.1523/JNEUROSCI.2441-08.2008
![]() |
[67] |
Kim HJ, Chae SC, Lee DK, et al. (2003) Selective neuronal degeneration induced by soluble oligomeric amyloid β protein. FASEB J 17: 118–120. doi: 10.1096/fj.01-0987fje
![]() |
[68] |
Roher AE, Lowenson JD, Clarke S, et al. (1993) β-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. P Natl Acad Sci USA 90: 10836. doi: 10.1073/pnas.90.22.10836
![]() |
[69] |
Näslund J, Schierhorn A, Hellman U, et al. (1994) Relative abundance of Alzheimer Aβ amyloid peptide variants in Alzheimer disease and normal aging. P Natl Acad Sci USA 91: 8378. doi: 10.1073/pnas.91.18.8378
![]() |
[70] |
Vandersteen A, Hubin E, Sarroukh R, et al. (2012) A comparative analysis of the aggregation behavior of amyloid-β peptide variants. FEBS Lett 586: 4088–4093. doi: 10.1016/j.febslet.2012.10.022
![]() |
[71] |
Barrow CJ, Yasuda A, Kenny PTM, et al. (1992) Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer's disease: Analysis of circular dichroism spectra. J Mol Biol 225: 1075–1093. doi: 10.1016/0022-2836(92)90106-T
![]() |
[72] |
Barrow CJ, Zagorski MG (1991) Solution structures of β peptide and its constituent fragments: Relation to amyloid deposition. Science 253: 179–182. doi: 10.1126/science.1853202
![]() |
[73] |
Inouye H, Fraser PE, Kirschner DA (1993) Structure of β-crystallite assemblies formed by Alzheimer β-amyloid protein analogs-analysis by x-ray diffraction. Biophys J 64: 502–519. doi: 10.1016/S0006-3495(93)81393-6
![]() |
[74] |
Torok M, Milton S, Kayed R, et al. (2002) Structural and dynamic features of Alzheimer's Aβ peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277: 40810–40815. doi: 10.1074/jbc.M205659200
![]() |
[75] |
Antzutkin ON, Balbach JJ, Leapman RD, et al. (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils. P Natl Acad Sci USA 97: 13045–13050. doi: 10.1073/pnas.230315097
![]() |
[76] |
Petkova AT, Leapman RD, Guo ZH, et al. (2005) Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307: 262–265. doi: 10.1126/science.1105850
![]() |
[77] |
Tycko R (2006) Solid-state NMR as a probe of amyloid structure. Protein Peptide Lett 13: 229–234. doi: 10.2174/092986606775338470
![]() |
[78] |
Pastor MT, Kuemmerer N, Schubert V, et al. (2008) Amyloid toxicity is independent of polypeptide sequence, length and chirality. J Mol Biol 375: 695–707. doi: 10.1016/j.jmb.2007.08.012
![]() |
[79] |
Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333–366. doi: 10.1146/annurev.biochem.75.101304.123901
![]() |
[80] |
Xue WF, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA 105: 8926–8931. doi: 10.1073/pnas.0711664105
![]() |
[81] |
Murphy R (2007) Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. BBA-Biomembranes 1768: 1923–1934. doi: 10.1016/j.bbamem.2006.12.014
![]() |
[82] |
Ghosh P, Vaidya A, Kumar A, et al. (2016) Determination of critical nucleation number for a single nucleation amyloid-β aggregation model. Math Biosci 273: 70–79. doi: 10.1016/j.mbs.2015.12.004
![]() |
[83] |
Garai K, Sahoo B, Sengupta P, et al. (2008) Quasihomogeneous nucleation of amyloid β yields numerical bounds for the critical radius, the surface tension, and the free energy barrier for nucleus formation. J Chem Phys 128: 045102. doi: 10.1063/1.2822322
![]() |
[84] |
Novo M, Freire S, Al-Soufi W (2018) Critical aggregation concentration for the formation of early Amyloid-β(1-42) oligomers. Sci Rep 8: 1783. doi: 10.1038/s41598-018-19961-3
![]() |
[85] |
Xue C, Lin TY, Chang D, et al. (2017) Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. Roy Soc Open Sci 4: 160696. doi: 10.1098/rsos.160696
![]() |
[86] |
Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struc Biol 17: 48–57. doi: 10.1016/j.sbi.2007.01.007
![]() |
[87] |
Kodali R, Williams AD, Chemuru S, et al. (2010) Aβ(1-40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated. J Mol Biol 401: 503–517. doi: 10.1016/j.jmb.2010.06.023
![]() |
[88] |
Meinhardt J, Sachse C, Hortschansky P, et al. (2009) Aβ(1-40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J Mol Biol 386: 869–877. doi: 10.1016/j.jmb.2008.11.005
![]() |
[89] |
Tycko R (2015) Amyloid polymorphism: Structural basis and neurobiological relevance. Neuron 86: 632–645. doi: 10.1016/j.neuron.2015.03.017
![]() |
[90] |
Colletier JP, Laganowsky A, Landau M, et al. (2011) Molecular basis for amyloid-β polymorphism. P Natl Acad Sci USA 108: 16938–16943. doi: 10.1073/pnas.1112600108
![]() |
[91] |
Crowther RA, Goedert M (2000) Abnormal Tau-containing filaments in Neurodegenerative Disease. J Struct Biol 130: 271–279. doi: 10.1006/jsbi.2000.4270
![]() |
[92] |
Lu JX, Qiang W, Yau WM, et al. (2013) Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154: 1257–1268. doi: 10.1016/j.cell.2013.08.035
![]() |
[93] |
Qiang W, Yau WM, Lu JX, et al. (2017) Structural variation in amyloid-β fibrils from Alzheimer's disease clinical subtypes. Nature 541: 217–221. doi: 10.1038/nature20814
![]() |
[94] |
Paravastu AK, Qahwash I, Leapman RD, et al. (2009) Seeded growth of β-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure. P Natl Acad Sci USA 106: 7443–7448. doi: 10.1073/pnas.0812033106
![]() |
[95] |
Yates EA, Legleiter J (2014) Preparation protocols of Aβ(1-40) promote the formation of polymorphic aggregates and altered interactions with lipid bilayers. Biochemistry 53: 7038–7050. doi: 10.1021/bi500792f
![]() |
[96] |
Teplow DB (2013) On the subject of rigor in the study of amyloid β-protein assembly. Alzheimers Res Ther 5: 39. doi: 10.1186/alzrt203
![]() |
[97] |
Lee MC, Yu WC, Shih YH, et al. (2018) Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer's disease. Sci Rep 8: 1–16. doi: 10.1038/s41598-017-17765-5
![]() |
[98] |
Ryan DA, Narrow WC, Federoff HJ, et al. (2010) An improved method for generating consistent soluble amyloid-β oligomer preparations for in vitro neurotoxicity studies. J Neurosci Meth 190: 171–179. doi: 10.1016/j.jneumeth.2010.05.001
![]() |
[99] |
Barghorn S, Nimmrich V, Striebinger A, et al. (2005) Globular amyloid β-peptide1-42 oligomer-A homogenous and stable neuropathological protein in Alzheimer's disease. J Neurochem 95: 834–847. doi: 10.1111/j.1471-4159.2005.03407.x
![]() |
[100] |
Thibaudeau TA, Anderson RT, Smith DM (2018) A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun 9: 1097. doi: 10.1038/s41467-018-03509-0
![]() |
[101] |
Stine WB, Dahlgren KN, Krafft GA, et al. (2003) In vitro characterization of conditions for amyloid-b peptide oligomerization and fibrillogenesis. J Biol Chem 278: 11612–11622. doi: 10.1074/jbc.M210207200
![]() |
[102] | Stine WB, Jungbauer L, Yu C, et al. (2011) Preparing synthetic Aβ in different aggregation states, In: Roberson ED (editor.), Alzheimer's Disease and Frontotemporal Dementia. Methods in Molecular Biology (Methods and Protocols), Totowa, NJ: Humana Press, 13–32. |
[103] | Benninger RJ, David T (1983) An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments. Brain Res Rev 287: 173–196. |
[104] |
Ryan TM, Caine J, Mertens HDT, et al. (2013) Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 1: e73. doi: 10.7717/peerj.73
![]() |
[105] |
Bitan G, Lomakin A, Teplow DB (2001) Amyloid β-protein oligomerization: Prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276: 35176–35184. doi: 10.1074/jbc.M102223200
![]() |
[106] | Lesne SE (2013) Breaking the code of amyloid-β oligomers. Int J Cell Biol 2013: 950783. |
[107] |
Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6: 42–49. doi: 10.1016/j.ebiom.2016.03.035
![]() |
[108] |
Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer's disease: An emperor in need of clothes. Nat Neurosci 15: 349–357. doi: 10.1038/nn.3028
![]() |
[109] | Ferreira ST, Lourenco MV, Oliveira MM, et al. (2015) Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front Cell Neurosci 9: 191. |
[110] |
Cline EN, Bicca MA, Viola KL, et al. (2018) The amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimers Dis 64: S567–S610. doi: 10.3233/JAD-179941
![]() |
[111] |
Brody DL, Jiang H, Wildburger N, et al. (2017) Non-canonical soluble amyloid-β aggregates and plaque buffering: Controversies and future directions for target discovery in Alzheimer's disease. Alzheimers Res Ther 9: 62. doi: 10.1186/s13195-017-0293-3
![]() |
[112] |
Sherman MA, LaCroix M, Amar F, et al. (2016) Soluble conformers of Aβ and Tau alter selective proteins governing axonal transport. J Neurosci 36: 9647–9658. doi: 10.1523/JNEUROSCI.1899-16.2016
![]() |
[113] |
O'Malley TT, Oktaviani NA, Zhang D, et al. (2014) Aβ dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies. Biochem J 461: 413–426. doi: 10.1042/BJ20140219
![]() |
[114] |
Cheng IH, Scearce-Levie K, Legleiter J, et al. (2007) Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282: 23818–23828. doi: 10.1074/jbc.M701078200
![]() |
[115] |
Amar F, Sherman MA, Rush T, et al. (2017) The amyloid-β oligomer Aβ*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci Signal 10: eaal2021. doi: 10.1126/scisignal.aal2021
![]() |
[116] |
Liu P, Reed MN, Kotilinek LA, et al. (2015) Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration. Cell Rep 11: 1760–1771. doi: 10.1016/j.celrep.2015.05.021
![]() |
[117] |
Knight EM, Kim SH, Kottwitz JC, et al. (2016) Effective anti-Alzheimer Aβ therapy involves depletion of specific Aβ oligomer subtypes. Neurol Neuroimmunol Neuroinflamm 3: e237. doi: 10.1212/NXI.0000000000000237
![]() |
[118] |
Velasco PT, Heffern MC, Sebollela A, et al. (2012) Synapse-binding subpopulations of Aβ oligomers sensitive to peptide assembly blockers and scFv antibodies. ACS Chem Neurosci 3: 972–981. doi: 10.1021/cn300122k
![]() |
[119] |
Ryan TM, Roberts BR, McColl G, et al. (2015) Stabilization of nontoxic Aβ-oligomers: Insights into the mechanism of action of hydroxyquinolines in Alzheimer's disease. J Neurosci 35: 2871–2884. doi: 10.1523/JNEUROSCI.2912-14.2015
![]() |
[120] |
Ferreira IL, Ferreiro E, Schmidt J, et al. (2015) Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol Aging 36: 680–692. doi: 10.1016/j.neurobiolaging.2014.09.006
![]() |
[121] |
Barz B, Liao Q, Strodel B (2018) Pathways of amyloid-β aggregation depend on oligomer shape. J Am Chem Soc 140: 319–327. doi: 10.1021/jacs.7b10343
![]() |
[122] |
Brito-Moreira J, Lourenco MV, Oliveira MM, et al. (2017) Interaction of amyloid-β (Aβ) oligomers with neurexin 2 and neuroligin 1 mediates synapse damage and memory loss in mice. J Biol Chem 292: 7327–7337. doi: 10.1074/jbc.M116.761189
![]() |
[123] |
Figueiredo CP, Clarke JR, Ledo JH, et al. (2013) Memantine rescues transient cognitive impairment caused by high-molecular-weight Aβ oligomers but not the persistent impairment induced by low-molecular-weight oligomers. J Neurosci 33: 9626–9317. doi: 10.1523/JNEUROSCI.0482-13.2013
![]() |
[124] |
Upadhaya AR, Lungrin I, Yamaguchi H, et al. (2012) High-molecular weight Aβ oligomers and protofibrils are the predominant Aβ species in the native soluble protein fraction of the AD brain. J Cell Mol Med 16: 287–295. doi: 10.1111/j.1582-4934.2011.01306.x
![]() |
[125] |
Mc Donald JM, O'Malley TT, Liu W, et al. (2015) The aqueous phase of Alzheimer's disease brain contains assemblies built from similar to 4 and similar to 7 kDa Aβ species. Alzheimers Dement 11: 1286–1305. doi: 10.1016/j.jalz.2015.01.005
![]() |
[126] |
Savioz A, Giannakopoulos P, Herrmann FR, et al. (2016) A study of Aβ oligomers in the temporal cortex and cerebellum of patients with neuropathologically confirmed Alzheimer's disease compared to aged controls. Neurodegener Dis 16: 398–406. doi: 10.1159/000446283
![]() |
[127] |
Breydo L, Kurouski D, Rasool S, et al. (2016) Structural differences between amyloid β oligomers. Biochem Bioph Res Co 477: 700–705. doi: 10.1016/j.bbrc.2016.06.122
![]() |
[128] |
Watanabe-Nakayama T, Ono K, Itami M, et al. (2016) High-speed atomic force microscopy reveals structural dynamics of amyloid β(1-42) aggregates. P Natl Acad Sci USA 113: 5835–5840. doi: 10.1073/pnas.1524807113
![]() |
[129] |
Matsumura S, Shinoda K, Yamada M, et al. (2011) Two distinct amyloid β-protein (Aβ) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. J Biol Chem 286: 11555–11562. doi: 10.1074/jbc.M110.181313
![]() |
[130] |
Miller Y, Ma B, Nussinov R (2010) Polymorphism in Alzheimer Aβ amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 110: 4820–4838. doi: 10.1021/cr900377t
![]() |
[131] |
Bernstein SL, Dupuis NF, Lazo ND, et al. (2009) Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat Chem 1: 326–331. doi: 10.1038/nchem.247
![]() |
[132] |
Economou NJ, Giammona MJ, Do TD, et al. (2016) Amyloid β-protein assembly and Alzheimer's disease: Dodecamers of Aβ42, but not of Aβ40, seed fibril formation. J Am Chem Soc 138: 1772–1775. doi: 10.1021/jacs.5b11913
![]() |
[133] |
Shamitko-Klingensmith N, Boyd JW, Legleiter J (2016) Microtubule modification influences cellular response to amyloid-β exposure. AIMS Biophysics 3: 261–285. doi: 10.3934/biophy.2016.2.261
![]() |
[134] |
Yates EA, Cucco EM, Legleiter J (2011) Point mutations in Aβ induce polymorphic aggregates at liquid/solid interfaces. ACS Chem Neurosci 2: 294–307. doi: 10.1021/cn200001k
![]() |
[135] |
Yates EA, Owens SL, Lynch MF, et al. (2013) Specific domains of Aβ facilitate aggregation on and association with lipid bilayers. J Mol Biol 425: 1915–1933. doi: 10.1016/j.jmb.2013.03.022
![]() |
[136] |
Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283: 29639–29643. doi: 10.1074/jbc.R800016200
![]() |
[137] |
Chromy BA, Nowak RJ, Lambert MP, et al. (2003) Self-assembly of Aβ(1-42) into globular neurotoxins. Biochemistry 42: 12749–12760. doi: 10.1021/bi030029q
![]() |
[138] |
Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27: 570–575. doi: 10.1016/j.neurobiolaging.2005.04.017
![]() |
[139] |
Lee EB, Leng LZ, Zhang B, et al. (2006) Targeting amyloid-β peptide (Aβ) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice. J Biol Chem 281: 4292–4299. doi: 10.1074/jbc.M511018200
![]() |
[140] |
Lambert MP, Velasco PT, Chang L, et al. (2007) Monoclonal antibodies that target pathological assemblies of Aβ. J Neurochem 100: 23–35. doi: 10.1111/j.1471-4159.2006.04157.x
![]() |
[141] |
Hayden EY, Conovaloff JL, Mason A, et al. (2017) Preparation of pure populations of covalently stabilized amyloid β-protein oligomers of specific sizes. Anal Biochem 518: 78–85. doi: 10.1016/j.ab.2016.10.026
![]() |
[142] |
Ono K, Li L, Takamura Y, et al. (2012) Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J Biol Chem 287: 14631–14643. doi: 10.1074/jbc.M111.325456
![]() |
[143] |
Bitan G, Kirkitadze MD, Lomakin A, et al. (2003) Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. P Natl Acad Sci USA 100: 330–335. doi: 10.1073/pnas.222681699
![]() |
[144] |
Al-Hilaly YK, Williams TL, Stewart-Parker M, et al. (2013) A central role for dityrosine crosslinking of Amyloid-β in Alzheimer's disease. Acta Neuropathol Commun 1: 83. doi: 10.1186/2051-5960-1-83
![]() |
[145] | Bush AI (2013) The metal theory of Alzheimer's disease. J Alzheimers Dis 33: S277–S281. |
[146] |
Butterfield DA, Boyd-Kimball D (2018) Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer's disease. J Alzheimers Dis 62: 1345–1367. doi: 10.3233/JAD-170543
![]() |
[147] |
Smith DP, Ciccotosto GD, Tew DJ, et al. (2007) Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer's disease amyloid-β peptide. Biochemistry 46: 2881–2891. doi: 10.1021/bi0620961
![]() |
[148] |
Ryan TM, Kirby N, Mertens HDT, et al. (2015) Small angle X-ray scattering analysis of Cu2+-induced oligomers of the Alzheimer's amyloid β peptide. Metallomics 7: 536–543. doi: 10.1039/C4MT00323C
![]() |
[149] |
Takano K, Endo S, Mukaiyama A, et al. (2006) Structure of amyloid β fragments in aqueous environments. FEBS J 273: 150–158. doi: 10.1111/j.1742-4658.2005.05051.x
![]() |
[150] |
Streltsov VA, Varghese JN, Masters CL, et al. (2011) Crystal structure of the amyloid-β p3 fragment provides a model for oligomer formation in Alzheimer's disease. J Neurosci 31: 1419–1426. doi: 10.1523/JNEUROSCI.4259-10.2011
![]() |
[151] |
Liu C, Sawaya MR, Cheng PN, et al. (2011) Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic β-sheet mimics. J Am Chem Soc 133: 6736–6744. doi: 10.1021/ja200222n
![]() |
[152] |
Pham JD, Chim N, Goulding CW, et al. (2013) Structures of oligomers of a peptide from β-amyloid. J Am Chem Soc 135: 12460–12467. doi: 10.1021/ja4068854
![]() |
[153] |
Spencer RK, Li H, Nowick JS (2014) X-ray crystallographic structures of trimers and higher-order oligomeric sssemblies of a peptide derived from Aβ17–36. J Am Chem Soc 136: 5595–5598. doi: 10.1021/ja5017409
![]() |
[154] |
Bhatia R, Lin H, Lal R (2000) Fresh and nonfibrillar amyloid b protein(1-42) induces rapid cellular degeneration in aged human fibroblasts: Evidence for AbP-channel-mediated cellular toxicity. FASEB 14: 1233–1243. doi: 10.1096/fasebj.14.9.1233
![]() |
[155] |
Lin H, Bhatia R, Lal R (2001) Amyloid b protein forms ion channels: Implications for Alzheimer's disease pathophysiology. FASEB 15: 2433–2444. doi: 10.1096/fj.01-0377com
![]() |
[156] |
Lin H, Zhu YJ, Lal R (1999) Amyloid-b protein (1–40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 38: 11189–11196. doi: 10.1021/bi982997c
![]() |
[157] |
Rhee SK, Quist AP, Lal R (1998) Amyloid b protein-(1-42) forms calcium-permeable, Zn2+-sensitive channel. J Biol Chem 273: 13379–13382. doi: 10.1074/jbc.273.22.13379
![]() |
[158] |
Parbhu A, Lin H, Thimm J, et al. (2002) Imaging real-time aggregation of amyloid β protein (1-42) by atomic force microscopy. Peptides 23: 1265–1270. doi: 10.1016/S0196-9781(02)00061-X
![]() |
[159] | Legleiter J, (2011) Assessing Aβ aggregation state by atomic force microscopy, In: Roberson ED (editor.), Alzheimer's Disease and Frontotemporal Dementia: Methods and Protocols, 57–70. |
[160] |
Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer's β-amyloid peptide on different substrates: New insights into mechanism of β-sheet formation. Proc Natl Acad Sci USA 96: 3688–3693. doi: 10.1073/pnas.96.7.3688
![]() |
[161] |
Hane F, Drolle E, Gaikwad R, et al. (2011) Amyloid-β aggregation on model lipid membranes: An atomic force microscopy study. J Alzheimers Dis 26: 485–494. doi: 10.3233/JAD-2011-102112
![]() |
[162] |
Legleiter J, Fryer JD, Holtzman DM, et al. (2011) The modulating effect of mechanical changes in lipid bilayers caused by apoE-containing lipoproteins on Aβ induced membrane disruption. ACS Chem Neurosci 2: 588–599. doi: 10.1021/cn2000475
![]() |
[163] |
Yip CM, Elton EA, Darabie AA, et al. (2001) Cholesterol, a modulator of membrane-associated Ab-fibrillogenesis and neurotoxicity. J Mol Biol 311: 723–734. doi: 10.1006/jmbi.2001.4881
![]() |
[164] |
Yip CM, McLaurin J (2001) Amyloid-b assembly: A critical step in fibrillogensis and membrane disruption. Biophys J 80: 1359–1371. doi: 10.1016/S0006-3495(01)76109-7
![]() |
[165] |
Pifer PM, Yates EA, Legleiter J (2011) Point mutations in Aβ result in the formation of distinct polymorphic aggregates in the presence of lipid bilayers. PLoS One 6: e16248. doi: 10.1371/journal.pone.0016248
![]() |
[166] |
Burke KA, Yates EA, Legleiter J (2013) Amyloid-forming proteins alter the local mechanical properties of lipid membranes. Biochemistry 52: 808–817. doi: 10.1021/bi301070v
![]() |
[167] |
Hane F, Tran G, Attwood S, et al. (2013) Cu2+ affects amyloid-β (1-42) aggregation by increasing peptide-peptide binding forces. PLoS One 8: e59005. doi: 10.1371/journal.pone.0059005
![]() |
[168] |
Kim BH, Palermo NY, Lovas S, et al. (2011) Single-molecule atomic force microscopy force spectroscopy study of Aβ-40 interactions. Biochemistry 50: 5154–5162. doi: 10.1021/bi200147a
![]() |
[169] |
Banerjee S, Sun Z, Hayden EY, et al. (2017) Nanoscale dynamics of amyloid-β42 oligomers as revealed by high-speed atomic force microscopy. ACS Nano 11: 12202–12209. doi: 10.1021/acsnano.7b05434
![]() |
[170] |
Yang T, Li S, Xu H, et al. (2017) Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci 37: 152–163. doi: 10.1523/JNEUROSCI.1698-16.2016
![]() |
[171] |
Ahmed M, Davis J, Aucoin D, et al. (2010) Structural conversion of neurotoxic amyloid-β(1-42) oligomers to fibrils. Nat Struct Mol Biol 17: 561–556. doi: 10.1038/nsmb.1799
![]() |
[172] |
Chimon S, Shaibat MA, Jones CR, et al. (2007) Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid. Nat Struct Mol Biol 14: 1157–1164. doi: 10.1038/nsmb1345
![]() |
[173] |
Stroud JC, Liu C, Teng PK, et al. (2012) Toxic fibrillar oligomers of amyloid-β have cross-β structure. P Natl Acad Sci USA 109: 7717–7722. doi: 10.1073/pnas.1203193109
![]() |
[174] |
Gu L, Liu C, Stroud JC, et al. (2014) Antiparallel triple-strand architecture for prefibrillar Aβ42 oligomers. J Biol Chem 289: 27300–27313. doi: 10.1074/jbc.M114.569004
![]() |
[175] |
Teoh CL, Su D, Sahu S, et al. (2015) Chemical fluorescent probe for detection of Aβ oligomers. J Am Chem Soc 137: 13503–13509. doi: 10.1021/jacs.5b06190
![]() |
[176] |
Jameson LP, Dzyuba SV (2013) Aza-BODIPY: Improved synthesis and interaction with soluble Aβ1-42 oligomers. Bioorg Med Chem Lett 23: 1732–1735. doi: 10.1016/j.bmcl.2013.01.065
![]() |
[177] |
Ono M, Watanabe H, Kimura H, et al. (2012) BODIPY-based molecular probe for imaging of cerebral β-amyloid plaques. ACS Chem Neurosci 3: 319–324. doi: 10.1021/cn3000058
![]() |
[178] |
Verwilst P, Kim HR, Seo J, et al. (2017) Rational design of in vivo Tau tangle-selective near-infrared fluorophores: expanding the BODIPY universe. J Am Chem Soc 139: 13393–13403. doi: 10.1021/jacs.7b05878
![]() |
1. | Samirah Alzahrani, A. A. Nasef, N. Youns, A. I. EL-Maghrabi, M. S. Badr, Soft topological approaches via soft γ-open sets, 2022, 7, 2473-6988, 12144, 10.3934/math.2022675 | |
2. | Baravan A. Asaad, Tareq M. Al-shami, Abdelwaheb Mhemdi, Bioperators on soft topological spaces, 2021, 6, 2473-6988, 12471, 10.3934/math.2021720 | |
3. | Samer Al Ghour, Some Modifications of Pairwise Soft Sets and Some of Their Related Concepts, 2021, 9, 2227-7390, 1781, 10.3390/math9151781 | |
4. | Rashad A. R. Bantan, Saif Ur Rehman, Shahid Mehmood, Waleed Almutiry, Amani Abdullah Alahmadi, Mohammed Elgarhy, Santosh Kumar, An Approach of Integral Equations in Complex-Valued b -Metric Space Using Commuting Self-Maps, 2022, 2022, 2314-8888, 1, 10.1155/2022/5862251 | |
5. | Tareq M. Al-shami, Huseyin Isik, Infra Soft Compact Spaces and Application to Fixed Point Theorem, 2021, 2021, 2314-8888, 1, 10.1155/2021/3417096 | |
6. | Tareq M. Al-shami, Adnan Tercan, Abdelwaheb Mhemdi, New soft separation axioms and fixed soft points with respect to total belong and total non-belong relations, 2021, 54, 2391-4661, 196, 10.1515/dema-2021-0018 | |
7. | Kemal Taşköprü, Soft order topology and graph comparison based on soft order, 2023, 8, 2473-6988, 9761, 10.3934/math.2023492 | |
8. | T. M. Al-shami, Serdar Ulubeyli, On Soft Separation Axioms and Their Applications on Decision-Making Problem, 2021, 2021, 1563-5147, 1, 10.1155/2021/8876978 | |
9. | Samer Al Ghour, Weaker Forms of Soft Regular and Soft T2 Soft Topological Spaces, 2021, 9, 2227-7390, 2153, 10.3390/math9172153 | |
10. | Shahid Mehmood, Saif Ur Rehman, Naeem Jan, Mabrook Al-Rakhami, Abdu Gumaei, Huseyin Isik, Rational Type Compatible Single-Valued Mappings via Unique Common Fixed Point Findings in Complex-Valued b-Metric Spaces with an Application, 2021, 2021, 2314-8888, 1, 10.1155/2021/9938959 | |
11. | Samer Al Ghour, Soft ωp-Open Sets and Soft ωp-Continuity in Soft Topological Spaces, 2021, 9, 2227-7390, 2632, 10.3390/math9202632 | |
12. | Samirah Alzahran, A.I. EL-Maghrabi, M.A. AL-Juhani, M.S. Badr, New approach of soft M-open sets in soft topological spaces, 2023, 35, 10183647, 102414, 10.1016/j.jksus.2022.102414 | |
13. | Tareq M. Al-shami, Radwan Abu-Gdairi, 2023, Chapter 35, 978-981-99-0446-4, 391, 10.1007/978-981-99-0447-1_35 |