Citation: Jay L. Brewster. Signaling hubs at ER/mitochondrial membrane associations[J]. AIMS Biophysics, 2017, 4(2): 222-239. doi: 10.3934/biophy.2017.2.222
[1] | Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49 |
[2] | Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739 |
[3] | Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337 |
[4] | Xiaomeng Wang, Xue Wang, Xinzhu Guan, Yun Xu, Kangwei Xu, Qiang Gao, Rong Cai, Yongli Cai . The impact of ambient air pollution on an influenza model with partial immunity and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10284-10303. doi: 10.3934/mbe.2023451 |
[5] | Boqiang Chen, Zhizhou Zhu, Qiong Li, Daihai He . Resurgence of different influenza types in China and the US in 2021. Mathematical Biosciences and Engineering, 2023, 20(4): 6327-6333. doi: 10.3934/mbe.2023273 |
[6] | Eunha Shim . Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 95-112. doi: 10.3934/mbe.2011.8.95 |
[7] | Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312 |
[8] | Dennis L. Chao, Dobromir T. Dimitrov . Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences and Engineering, 2016, 13(2): 249-259. doi: 10.3934/mbe.2015001 |
[9] | Junyuan Yang, Guoqiang Wang, Shuo Zhang . Impact of household quarantine on SARS-Cov-2 infection in mainland China: A mean-field modelling approach. Mathematical Biosciences and Engineering, 2020, 17(5): 4500-4512. doi: 10.3934/mbe.2020248 |
[10] | Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413 |
Stochastic homogenization is a subject broadly studied starting from '80 since the seminal papers by Kozlov [11] and Papanicolaou-Varadhan [18] who studied boundary value problems for second order linear PDEs. We prove here an abstract homogenization result for the graph of a random maximal monotone operator
v(x,ω)∈αε(x,ω,u(x,ω)), |
where
αε(x,ω,⋅):=α(Tx/εω,⋅). | (1) |
The aim of this paper is to extend existing results where
The outline of the proof is the following: Let
Under which assumptions can we conclude that y=Ax? |
A classical answer (see, e.g., [3]) is: If we can produce an auxiliary sequence of points on the graph of
(ξn,ηn)∈X×X′ such that ηn=Anξn, (ξn,ηn)⇀(ξ,η) and η=Aξ, | (2) |
then, denoting by
⟨yn−ηn,xn−ξn⟩≥0. |
In order to pass to the limit as
lim supn→∞⟨gn,fn⟩≤⟨g,f⟩∀(fn,gn)⇀(f,g) in X×X′, | (3) |
which, together with the weak convergence of
⟨y−η,x−ξ⟩≥0. |
By maximal monotonicity of
1. Existence and weak compactness of solutions
2. A condition for the convergence of the duality pairing (3);
3. Existence of a recovery sequence (2) for all points in the limit graph.
The first step depends on the well-posedness of the application; the second step is ensured, e.g., by compensated compactness (in the sense of Murat-Tartar [15,23]), and, like the first one, it depends on the character of the differential operators that appear in the application, rather than on the homogenization procedure. In the present paper we focus on the third step: in the context of stochastic homogenization, we prove that the scale integration/disintegration idea introduced by Visintin [25], combined with Birkhoff's ergodic theorem (Theorem 2.4) yields the desired recovery sequence. We obtain an explicit formula for the limit operator
α a)⟶ f b)⟶ f0 c)⟶ α0, |
where a) the random operator
In Section 2.1 we review the properties of maximal monotone operators and their variational formulation due to Fitzpatrick. In Section 2.2 we recall the basis of ergodic theory that we need in order to state our first main tool: Birkhoff's Ergodic Theorem. Section 3 is devoted to the translation to the stochastic setting of Visintin's scale integration-disintegration theory, which paves the way to our main result, Theorem 3.8. The applications we provide in the last section are: Ohmic electric conduction with Hall effect (Section 4.1), and nonlinear elasticity, (Section 4.2).
We use the notation
In this section we summarize the variational representation of maximal monotone operators introduced in [8]. Further details and proofs of the statements can be found, e.g., in [27]. Let
Gα:={(x,y)∈B×B′:y∈α(x)} |
be its graph. (We will equivalently write
(x,y)∈Gα⇒⟨y−y0,x−x0⟩≥0,∀(x0,y0)∈Gα | (4) |
and strictly monotone if there is
(x,y)∈Gα⇒⟨y−y0,x−x0⟩≥θ‖x−x0‖2,∀(x0,y0)∈Gα. | (5) |
We denote by
x∈α−1(y)⇔y∈α(x). |
The monotone operator
⟨y−y0,x−x0⟩≥0∀(x0,y0)∈Gα⇔(x,y)∈Gα. |
An operator
fα(x,y):=⟨y,x⟩+sup{⟨y−y0,x0−x⟩:(x0,y0)∈Gα}=sup{⟨y,x0⟩+⟨y0,x⟩−⟨y0,x0⟩:(x0,y0)∈Gα}. |
As a supremum of a family of linear functions, the Fitzpatrick function
Lemma 2.1. An operator
(x,y)∈Gα⇒fα(x,y)=⟨y,x⟩, |
while
{fα(x,y)≥⟨y,x⟩ ∀(x,y)∈B×B′fα(x,y)=⟨y,x⟩⟺(x,y)∈Gα. |
In the case
1. Let
fα(x,y)=(y−b+ax)24a+bx. |
2. Let
α(x)={1if x>0,[0,1]if x=0,−1if x<0. |
Then
fα(x,y)={|x|if |y|≤1,+∞if |y|>1. |
and in both cases
We define
f(x,y)≥⟨y,x⟩∀(x,y)∈B×B′. |
We call
(x,y)∈Gαf⇔f(x,y)=⟨y,x⟩. | (6) |
A crucial point is whether
Lemma 2.2. Let
(i) the operator
(ii) the class of maximal monotone operators is strictly contained in the class of operators representable by functions in
Proof. (ⅰ) If
g(P1+P22)−g(P1)+g(P2)2=14(⟨y1+y2,x1+x2⟩)−12(⟨y1,x1⟩+⟨y2,x2⟩)=14(⟨y1,x2⟩+⟨y2,x1⟩−⟨y1,x1⟩−⟨y2,x2⟩)=−14(⟨y2−y1,x2−x1⟩)>0. |
Since
f(P1+P22)>f(P1)+f(P2)2, |
which contradicts the convexity of
(ⅱ) Maximal monotone operators are representable by Lemma 2.1. To see that the inclusion is strict, assume that
h(x,y)=max{c,f(x,y)} |
clearly belongs to
h(x0,y0)≥c>f(x0,y0)=⟨y0,x0⟩, |
and thus
Remark 1. When
φ(x)+φ∗(y)≥⟨y,x⟩∀(x,y)∈B×B′, |
y∈α(x)⇔φ(x)+φ∗(y)=⟨y,x⟩. |
Thus, Fitzpatrick's representative function
fα(x,y)=(x+y)24≠x22+y22=φ(x)+φ∗(y). |
We need to introduce also parameter-dependent operators. For any measurable space
g−1(R):={x∈X:g(x)∩R≠∅} |
is measurable.
Let
α is B(B)⊗A-measurable, | (7) |
α(x,ω) is closed for any x∈B and for μ-a.e. ω∈Ω, | (8) |
α(⋅,ω) is (maximal) monotone for μ-a.e. ω∈Ω. | (9) |
If
(a)
(b)
(c)
As above,
y∈α(x,ω) ⇔ f(x,y,ω)=⟨y,x⟩∀(x,y)∈B×B′,for μ-a.e. ω∈Ω. | (10) |
Precisely, any measurable representative function
In this subsection we review the basic notions and results of stochastic analysis that we need in Section 3. For more details see [10,Chapter 7]. Let
(a)
(b) for every
μ(TxE)=μ(E) | (11) |
(c) for any measurable function
˜f(x,ω)=f(Txω) |
is measurable.
Given an
E(f):=∫Ωfdμ. |
In the context of stochastic homogenization, it is useful to provide an orthogonal decomposition of
∫(vi∂φ∂xj−vj∂φ∂xi)dx=0, ∀i,j=1,…,n,∀φ∈D(Rn) |
and we say that
n∑i=1∫vi∂φ∂xidx=0, ∀φ∈D(Rn). |
Next we consider a vector field on
Lemma 2.3. Define the spaces
Vppot(Ω;Rn):={f∈Lppot(Ω;Rn):E(f)=0},Vpsol(Ω;Rn):={f∈Lpsol(Ω;Rn):E(f)=0}. |
The spaces
E(u⋅v)=E(u)⋅E(v) | (12) |
and the relations
(Vpsol(Ω;Rn))⊥=Vp′pot(Ω;Rn)⊕Rn,(Vppot(Ω;Rn))⊥=Vp′sol(Ω;Rn)⊕Rn |
hold in the sense of duality pairing between the spaces
One of the most important results regarding stochastic homogenization is Birk-hoff's Ergodic Theorem. We report the statement given in [10,Theorem 7.2].
Theorem 2.4. (Birkhoff's Ergodic Theorem) Let
E(f)=limε→01|K|∫Kf(Tx/εω)dx |
for
Remark 2. Birkhoff's theorem implies that
limε→01|K|∫K˜fε(x,ω)dx=E(f). |
Since this holds for every measurable bounded set
˜fε⇀E(f) weakly in Lploc(Rn;Rm) for μ-a.e. ω∈Ω. | (13) |
In what follows, the dynamical system
Let be given a probability space
We rephrase here Visintin's scale integration/disintegration [25,26] to the stochastic homogenization setting.
Remark 3. While most of this subsection's statements are Visintin's results written in a different notation, some others contain a small, but original contribution. Namely: Lemma 3.1 can be found in [26,Lemma 4.1], where the assumption of boundedness for
For every fixed
f(ξ,η,ω)≥c(|ξ|p+|η|p′)+k(ω). | (14) |
We define the homogenised representation
f0(ξ,η):=inf{∫Ωf(ξ+v(ω),η+u(ω),ω)dμ:u∈Vppot(Ω;Rn),v∈Vp′sol(Ω;Rn)}. | (15) |
Lemma 3.1. Let
1i.e., for all
h(x):=infy∈Kg(x,y) |
is weakly lower semicontinuous and coercive. Moreover, if
Proof. Let
lim infj→+∞h(xj)≥h(x). | (16) |
Let
ℓ:=lim infj→+∞h(xj). |
If
h(xj)=infy∈Kg(xj,y)≥g(xj,yj)−ε. | (17) |
Therefore
g(xj,yj)≤2ℓ+ε∀j∈N. |
By the coercivity assumption on
lim infk→+∞h(xjk)≥lim infk→+∞g(xjk,yjk)−ε≥g(x,y)−ε≥h(x)−ε. | (18) |
By arbitrariness of
h(λx1+(1−λ)x2)≤g(λx1+(1−λ)x2,λy1+(1−λ)y2)≤λg(x1,y1)+(1−λ)g(x2,y2). |
Passing to the infimum with respect to
h(λx1+(1−λ)x2)≤λh(x1)+(1−λ)h(x2). |
Regarding the coercivity of
Bt:={x∈X:h(x)≤t},At:={x∈X:g(x,y)≤t, for some y∈K}. |
Let
In the proof of Proposition 1 we need the following estimate
Lemma 3.2. For all
∫Ω|ξ+u(ω)|pdμ≥C∫Ω|ξ|p+|u(ω)|pdμ |
for all
Proof. Consider the operator
Φ:Lp(Ω;Rn)→Lp(Ω;Rn)×Lp(Ω;Rn)u↦(E(u),u−E(u)). |
Clearly,
∫Ω|E(u)|pdμ+∫Ω|u(ω)−E(u)|pdμ≤(‖E(u)‖Lp+‖u−E(u)‖Lp)p≤2p/2(‖E(u)‖2Lp+‖u−E(u)‖2Lp)p/2=2p/2‖Φ(u)‖pLp×Lp≤C‖u‖pLp=C∫Ω|u(ω)|pdμ. |
Apply now the last inequality to
∫Ω|ξ|p+|˜u(ω)|pdμ≤C∫Ω|ξ+˜u(ω)|pdμ. |
Proposition 1. For all
f0(ξ,η)≥ξ⋅η∀(ξ,η)∈Rn×Rn. | (19) |
Proof. Let
Fξ,η(u,v):=∫Ωf(ξ+v(ω),η+u(ω),ω)dμ. |
We prove that the problem
Fξ,η(u,v)≤lim infh→∞Fξ,η(uh,vh)=infKFξ,η. |
This concludes the first part of the statement. We now want to show that
Fξ,η(u,v)≥c∫Ω|ξ+v(ω)|p+|η+u(ω)|p′+k(ω)dμ≥C∫Ω|ξ|p+|u(ω)|p+|η|p′+|v(ω)|p′dμ+E(k)≥C(|ξ|p+‖u‖pLp(Ω)+|η|p′+‖v‖p′Lp′(Ω))−‖k‖L1(Ω). |
Thus, for any
{(ξ,η,(u,v))∈Rn×Rn×K:Fξ,η(u,v)≤M} |
is bounded in
f0(ξ,η)=∫Ωf(ξ+˜u(ω),η+˜v(ω),ω)dμ≥∫Ω(ξ+˜u(ω))⋅(η+˜v(ω))dμ=E(ξ+˜u)⋅E(η+˜v)=ξ⋅η, |
which yields the conclusion.
We denote by
η∈α0(ξ)⇔f0(ξ,η)=ξ⋅η. |
We refer to
Lemma 3.3. Let
v(ω)∈α(u(ω),ω),forμ−a.e.ω∈Ω. | (20) |
Moreover,
E(v)∈α0(E(u)). | (21) |
Proof. Since
f0(ξ,η)=ξ⋅η. | (22) |
Take now
f0(ξ,η)=∫Ωf(ξ+˜u(ω),η+˜v(ω),ω)dμ. | (23) |
Since
ξ⋅η=E(ξ+˜u)⋅E(η+˜v)(12)=∫Ω(ξ+˜u(ω))⋅(η+˜v(ω))dμf∈F(Rn)≤∫Ωf(ξ+˜u(ω),η+˜v(ω),ω)dμ(23)=f0(ξ,η)(22)=ξ⋅η |
from which we obtain
(ξ+˜u(ω))⋅(η+˜v(ω))=f(ξ+˜u(ω),η+˜v(ω),ω),μ-a.e. ω∈Ω. | (24) |
Let
Lemma 3.3 is also referred to as scale disintegration (see [26,Theorem 4.4]), as it shows that given a solution
Lemma 3.4. Let
v(ω)∈α(u(ω),ω),forμ−a.e.ω∈Ω, | (25) |
then
E(v)∈α0(E(u)). | (26) |
Proof. By (25) and (12)
∫Ωf(u(ω),v(ω),ω)dμ=∫Ωu(ω)⋅v(ω)dμ=E(u)⋅E(v). |
On the other hand, by definition of
∫Ωf(u(ω),v(ω),ω)dμ≥f0(E(u),E(v))≥E(u)⋅E(v). |
We conclude that
How the properties of
Theorem 3.5. If
∫Ωf(u(ω),v(ω),ω)dμ<+∞, |
In order to obtain strict monotonicity of
Lemma 3.6. Let
Proof. For all
vi(ω)∈α(ui(ω),ω),for μ-a.e. ω∈Ω | (27) |
and
(η2−η1)⋅(ξ2−ξ1)=∫Ω(v2(ω)−v1(ω))⋅(u2(ω)−u1(ω))dμ≥θ∫Ω|u2(ω)−u1(ω)|2dμ≥θ|∫Ωu2(ω)−u1(ω)dμ|2=θ|ξ2−ξ1|2. |
Let
Lemma 3.7 (Div-Curl lemma, [15]). Let
vn⇀vweaklyinLp′(D;Rm),un⇀uweaklyinLp(D;Rm). |
In addition, assume that
{curlvn} is compact in W−1,p′(D;Rm×m), {div un} is compact in W−1,p(D). |
Then
vn⋅un∗⇀v⋅uin D′(D). |
We are now ready to prove our main result concerning the stochastic homogenization of a maximal monotone relation.
Theorem 3.8. Let
Let
(Jεω,Eεω)∈Lp(D;Rn)×Lp′(D;Rn) |
such that
{divJεω}ε≥0 is compact in W−1,p(D),{curlEεω}ε≥0 is compact in W−1,p′(D;Rn×n), | (28a) |
limε→0Jεω=J0ωweaklyinLp(D;Rn),limε→0Eεω=E0ωweaklyinLp′(D;Rn), | (28b) |
Eεω(x)∈α(Jεω(x),Tx/εω)a.e.inD. | (28c) |
Then, for
E0ω(x)∈α0(J0ω(x))a.e.inD, | (29) |
where
f0(ξ,η):=inf{∫Ωf(ξ+u(ω),η+v(ω),ω)dμ:u∈Vpsol(Ω;Rn),v∈Vp′pot(Ω;Rn)}. |
Proof. By Lemma 3.3 for all
v(ω)∈α(u(ω),ω),for μ-a.e. ω∈Ω. | (30) |
Define the stationary random fields
uε(x,ω):=u(Tx/εω),vε(x,ω):=v(Tx/εω). |
For
x↦uε(x,ω)∈Lploc(Rn;Rn),x↦vε(x,ω)∈Lp′loc(Rn;Rn). |
Equation (30) implies
vε(x,ω)∈α(uε(x,ω),Tx/εω),for a.e. x∈D, μ-a.e. ω∈Ω. | (31) |
By Birkhoff's Theorem (and (13), in particular), for
uε(⋅,ω)⇀E(u)weakly in Lp(D;Rn),vε(⋅,ω)⇀E(v)weakly in Lp′(D;Rn). | (32) |
Since
∫D(Eεω(x)−vε(x,ω))⋅(Jεω(x)−uε(x,ω))ϕ(x)dx≥0, | (33) |
for any
{curl(Eεω−vε(⋅,ω))}ε is compact in W−1,p′(D;Rn×n),{div(Jεω−uε(⋅,ω))}ε is compact in W−1,p(D). |
By (28b), (32), and Lemma 3.7, we can thus pass to the limit as
∫D(E0ω(x)−E(v))⋅(J0ω(x)−E(u))ϕ(x)dx≥0,for μ-a.e. ω∈Ω. |
Since the last inequality holds for all nonnegative
(E0ω(x)−E(v))⋅(J0ω(x)−E(u))≥0,for μ-a.e. ω∈Ω. |
To conclude, since
E0ω(x)∈α0(J0ω(x)) |
for a.e.
Remark 4. In this section's results, the function spaces
U⊂Lp(Ω;Rn),V⊂Lp′(Ω;Rn) |
such that
E(u⋅v)=E(u)⋅E(v),∀(u,v)∈U×V. |
Furthermore, Proposition 1 and Lemma 3.3 remain valid if the previous equality is replaced by the inequality
E(u⋅v)≥E(u)⋅E(v),∀(u,v)∈U×V. |
In this subsection we address the homogenization problem for the Ohm-Hall model for an electric conductor. For further information about the Ohm-Hall effect we refer the reader to [1,pp. 11-15], [12,Section 22] and we also follow [26] for the suitable mathematical formulation in terms of maximal monotone operators. We consider a non-homogeneous electric conductor, that occupies a bounded Lipschitz domain
E(x)∈α(J(x),x)+h(x)J(x)×B(x)+Ea(x)in D, | (34) |
where
curlE=g,divJ=0, |
where the vector field
β(J,x):=α(J,x)+h(x)J×B(x)+Ea(x). |
A single-valued parameter-dependent operator
(β(v1,x)−β(v2,x))⋅(v1−v2)≥θ‖v1−v2‖2∀v1,v2∈R3. | (35) |
The following existence and uniqueness result is a classical consequence of the maximal monotonicity of
Theorem 4.1. Let
|β(x,v)|≤c(1+|v|), | (36) |
β(x,v)⋅v≥a|v|2−b. | (37) |
Let
‖E‖L2+‖J‖L2≤C(1+‖g‖L2) | (38) |
and, denoting by
E(x)=β(J(x),x) inD, | (39) |
curlE(x)=g(x) inD, | (40) |
divJ(x)=0 inD, | (41) |
E(x)×ν(x)=0 on∂D. | (42) |
Moreover, if
Remark 5. Conditions (40)-(41) have to be intended in the weak sense -see below -while (42) holds in
Let
h∈L∞(Ω),B∈L∞(Ω;R3),Ea∈L2(Ω;R3). | (43) |
For any
β(J,ω):=α(J,ω)+h(ω)J×B(ω)+Ea(ω). | (44) |
In order to apply the scale integration procedure, we assume that
the representative function f of β is coercive, in the sense of (14), | (45) |
moreover, to ensure uniqueness of a solution
β and β−1 are strictly monotone, uniformly with respect to x∈D. | (46) |
As in the previous section
βε(⋅,x,ω):=β(⋅,Tx/εω). |
Then
divgε=0,in D′(D), for μ-a.e. ω∈Ω. | (47) |
We are ready to state and prove the homogenization result for the Ohm-Hall model.
Theorem 4.2. Assume that (43)-(47) are fulfilled. Then
1. For
Eεω(x)=βε(Jεω(x),x,ω)inD, | (48) |
curlEεω(x)=gε(x,ω)inD, | (49) |
\begin{align}& {\rm{div}}\, J_\omega^\varepsilon(x) = 0 & &in\;\;\;D, \label{P:magn-eps}\end{align} | (50) |
\begin{align}&E_\omega^\varepsilon(x) \times \nu(x) = 0 & &on \;\;\;\partial D. \label{P:bound-eps} \end{align} | (51) |
2. There exists
\label{eq:conv} E_\omega^\varepsilon \rightharpoonup E \;\;\;\;\;and\;\;\;\;\; J_\omega^\varepsilon \rightharpoonup J | (52) |
as
3. The limit couple
\begin{align} & E(x) = \beta_0(J(x)) \;\;\;\;\; & &in\;\;\; D, \label{P:incl-hom} \end{align} | (53) |
\begin{align}& {\rm{curl}}\, E(x) = g(x)\;\;\;\;\; & &in\;\;\; D, \label{P:ele-hom} \end{align} | (54) |
\begin{align}& {\rm{div}}\, J(x) = 0 \;\;\;\;\; & &in \;\;\; D, \label{P:magn-hom} \end{align} | (55) |
\begin{align}& E(x) \times \nu(x) = 0 \;\;\;\;\; & &on\;\;\; \partial D. \label{P:bound-hom} \end{align} | (56) |
Proof. 1. Assumption (46) implies that
2. Let
3. The weak formulation of (49)-(51) is:
\label{eq:weak} \int_D E_\omega^\varepsilon \cdot \text{curl}\, \phi + J_\omega^\varepsilon \cdot \nabla \psi\, dx = \int_D g_\varepsilon \cdot \phi\, dx, | (57) |
for all
\int_D E_\omega \cdot \text{curl}\, \phi + J_\omega \cdot \nabla \psi\, dx = \int_D g \cdot \phi\, dx, |
which is exactly the weak formulation of (54)-(56). Equations (49) and (50) imply that
E_\omega(x) = \beta_0(J_\omega(x)). |
We have thus proved that
4. By Lemma 3.6 and assumption (46),
Another straightforward application of the homogenization theorem 3.8 is given in the framework of deformations in continuum mechanics (see, e.g., [4,Chapter 3]). Elastic materials are usually described through the deformation vector
\label{eq:nlelastic} \sigma(x, t) = \beta(\nabla u(x, t), x), | (58) |
where
\rho \partial _{t}^{2}u-\text{div}\sigma =F, |
where
The following existence and uniqueness result is a classical consequence of the maximal monotonicity of
Theorem 4.3. Let
\label{Q:estimates} {\|u\|}_{H^1} +{\|\sigma\|}_{L^2}\leq C\left(1+{\|F\|}_{L^2}\right) | (59) |
and, denoting by
\begin{align} \sigma(x) & = \beta(\nabla u(x), x)\;\;\;\;\; in\;\;\; D, \label{Q:incl}\end{align} | (60) |
\begin{align} -div\, \sigma(x) & = F(x) \;\;\;\;\; in\;\;\; D, \label{Q:ele}\end{align} | (61) |
\begin{align} u(x) & = 0 \;\;\;\;\; on\;\;\; \partial D. \label{Q:bound} \end{align} | (62) |
Moreover, if
As above, we consider a family of maximal monotone operators
\beta_\varepsilon (\cdot, x, \omega): = \beta(\cdot, T_{x/\varepsilon }\omega) |
defines a family of maximal monotone operators on
Theorem 4.4. Assume that (45) and (46) are fulfilled. Then
1. For
\begin{align} & \sigma_\omega^\varepsilon(x) = \beta_\varepsilon (\nabla u_\omega^\varepsilon(x), x, \omega) & &in\;\;\; D, \label{Q:incl-eps}\end{align} | (63) |
\begin{align}& -{\rm{div}}\, \sigma_\omega^\varepsilon(x) = F_\varepsilon (x, \omega) & &in \;\;\;D, \label{Q:ele-eps}\end{align} | (64) |
\begin{align}&u_\omega^\varepsilon(x) = 0 & &on\;\;\; \partial D. \label{Q:bound-eps} \end{align} | (65) |
2. There exist
\label{Q:conv} u_\omega^\varepsilon \rightharpoonup u \;\;\;\;\;and\;\;\;\;\; \sigma_\omega^\varepsilon \rightharpoonup \sigma | (66) |
as
3. The limit couple
\begin{align} & \sigma(x) = \beta_0(\nabla u(x)) & &in\;\;\; D, \label{Q:incl-hom}\end{align} | (67) |
\begin{align}& -{\rm{div}}\, \sigma(x) = F(x) & &in \;\;D, \label{Q:ele-hom}\end{align} | (68) |
\begin{align}& u(x) = 0 & &on\;\;\; \partial D. \label{Q:bound-hom} \end{align} | (69) |
Proof. Steps 1. and 2. follow exactly as in the proof of Theorem 4.2.
3. The weak formulation of (64)-(65) is the following:
\label{Q:weak} \int_D \sigma_\omega^\varepsilon \cdot \nabla \phi\, dx = \int_D F_\varepsilon \phi\, dx, | (70) |
for all
\int_D \sigma_\omega \cdot \nabla \phi\, dx = \int_D F \phi\, dx, |
which is exactly the weak formulation of (68)-(69). Equation (64) and estimate (59) imply that
{{\{\text{div}\sigma _{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ is compact in }{{W}^{-1,2}}(D;{{\mathbb{R}}^{3}}), |
{{\{\text{curl}\nabla u_{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ is compact in }{{W}^{-1,2}}(D;{{\mathbb{R}}^{3\times 3}}). |
Therefore, we can apply the abstract stochastic homogenization Theorem 3.8, (with
\sigma_\omega(x) = \beta_0(\nabla u_\omega(x)). |
Finally, the strict monotonicity of the limit operators
We would like to thank the anonymous referees for their valuable comments and remarks.
[1] |
MacLennan DH, Rice WJ, Green NM (1997) The mechanism of Ca2+ transport by sarco (endo) plasmic reticulum Ca2+-ATPases. J Biol Chem 272: 28815–28818. doi: 10.1074/jbc.272.46.28815
![]() |
[2] |
Clapham DE (1995) Calcium signaling. Cell 80: 259–268. doi: 10.1016/0092-8674(95)90408-5
![]() |
[3] |
Clapham DE (2007) Calcium signaling. Cell 131: 1047–1058. doi: 10.1016/j.cell.2007.11.028
![]() |
[4] |
Kuhlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13: 89. doi: 10.1186/s12915-015-0201-x
![]() |
[5] |
Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11: 872–884. doi: 10.1038/nrm3013
![]() |
[6] |
Westermann B (2010) Mitochondrial dynamics in model organisms: what yeasts, worms and flies have taught us about fusion and fission of mitochondria. Semin Cell Dev Biol 21: 542–549. doi: 10.1016/j.semcdb.2009.12.003
![]() |
[7] |
Archer SL (2013) Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 369: 2236–2251. doi: 10.1056/NEJMra1215233
![]() |
[8] |
Daum B, Walter A, Horst A, et al. (2013) Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci USA 110: 15301–15306. doi: 10.1073/pnas.1305462110
![]() |
[9] | Robertson JD (1960) The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol 10: 343–418. |
[10] |
Rizzuto R, Pinton P, Carrington W, et al. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763–1766. doi: 10.1126/science.280.5370.1763
![]() |
[11] |
Garcia-Perez C, Roy SS, Naghdi S, et al. (2012) Bid-induced mitochondrial membrane permeabilization waves propagated by local reactive oxygen species (ROS) signaling. Proc Natl Acad Sci USA 109: 4497–4502. doi: 10.1073/pnas.1118244109
![]() |
[12] |
Williams A, Hayashi T, Wolozny D, et al. (2016) The non-apoptotic action of Bcl-xL: regulating Ca(2+) signaling and bioenergetics at the ER-mitochondrion interface. J Bioenerg Biomembr 48: 211–225. doi: 10.1007/s10863-016-9664-x
![]() |
[13] |
Giorgi C, Bonora M, Sorrentino G, et al. (2015) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA 112: 1779–1784. doi: 10.1073/pnas.1410723112
![]() |
[14] | Haupt S, Raghu D, Haupt Y (2015) p53 Calls upon CIA (Calcium Induced Apoptosis) to Counter Stress. Front Oncol 5: 57. |
[15] | Brisac C, Teoule F, Autret A, et al. (2010) Calcium flux between the endoplasmic reticulum and mitochondrion contributes to poliovirus-induced apoptosis. J Virol 84: 12226–12235. |
[16] |
Luciani DS, Gwiazda KS, Yang TL, et al. (2009) Roles of IP3R and RyR Ca2+ channels in endoplasmic reticulum stress and beta-cell death. Diabetes 58: 422–432. doi: 10.2337/db07-1762
![]() |
[17] |
Toglia P, Ullah G (2016) The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer's disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore. Cell Calcium 60: 13–24. doi: 10.1016/j.ceca.2016.05.002
![]() |
[18] |
Szabadkai G, Bianchi K, Varnai P, et al. (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175: 901–911. doi: 10.1083/jcb.200608073
![]() |
[19] |
Csordas G, Renken C, Varnai P, et al. (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174: 915–921. doi: 10.1083/jcb.200604016
![]() |
[20] |
Hansford RG (1994) Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr 26: 495–508. doi: 10.1007/BF00762734
![]() |
[21] |
Rutter GA, Burnett P, Rizzuto R, et al. (1996) Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci USA 93: 5489–5494. doi: 10.1073/pnas.93.11.5489
![]() |
[22] |
Palty R, Hershfinkel M, Sekler I (2012) Molecular identity and functional properties of the mitochondrial Na+/Ca2+ exchanger. J Biol Chem 287: 31650–31657. doi: 10.1074/jbc.R112.355867
![]() |
[23] | Adam-Vizi V, Starkov AA (2010) Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J Alzheimers Dis 20 Suppl 2: S413–S426. |
[24] |
Hansson MJ, Mansson R, Morota S, et al. (2008) Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med 45: 284–294. doi: 10.1016/j.freeradbiomed.2008.04.021
![]() |
[25] |
Varanita T, Soriano ME, Romanello V, et al. (2015) The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21: 834–844. doi: 10.1016/j.cmet.2015.05.007
![]() |
[26] | Sonnino S, Prinetti A (2013) Membrane domains and the "lipid raft" concept. Curr Med Chem 20: 4–21. |
[27] | Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265: 7248–7256. |
[28] | Rusinol AE, Cui Z, Chen MH, et al. (1994) A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269: 27494–27502. |
[29] |
Tessitore A, del P Martin M, Sano R, et al. (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15: 753–766. doi: 10.1016/j.molcel.2004.08.029
![]() |
[30] |
Sano R, Annuziata I, Patterson A, et al. (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36: 500–511. doi: 10.1016/j.molcel.2009.10.021
![]() |
[31] | Annunziata I, Patterson A, D'Azzo A (2013) Mitochondria-associated ER membranes (MAMs) and glycosphingolipid enriched microdomains (GEMs): isolation from mouse brain. J Vis Exp 73: e50215. |
[32] |
Garofalo T, Matarrese P, Manganeli V, et al. (2016) Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation. Autophagy 12: 917–935. doi: 10.1080/15548627.2016.1160971
![]() |
[33] |
Pomorski TG, Menon AK (2016) Lipid somersaults: Uncovering the mechanisms of protein-mediated lipid flipping. Prog Lipid Res 64: 69–84. doi: 10.1016/j.plipres.2016.08.003
![]() |
[34] | Vance JE, Aasman EJ, Szarka R (1991) Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J Biol Chem 266: 8241–8247. |
[35] |
Lev S (2010) Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol 11: 739–750. doi: 10.1038/nrm2971
![]() |
[36] |
D'Angelo G, Vicinanza M, De Matteis MA (2008) Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 20: 360–370. doi: 10.1016/j.ceb.2008.03.013
![]() |
[37] |
Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24: 44–52. doi: 10.1016/j.tcb.2013.07.011
![]() |
[38] |
Miller WL (2013) Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol 379: 62–73. doi: 10.1016/j.mce.2013.04.014
![]() |
[39] | Salavila A, Navarrolerida I, Sanchezalvarez M, et al. (2016) Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci Rep 6: 27351. |
[40] |
Kojima R, Endo T, Tamura Y (2016) A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro. Sci Rep 6: 30777. doi: 10.1038/srep30777
![]() |
[41] |
Kornmann B, Currie E, Collins SR, et al. (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325: 477–481. doi: 10.1126/science.1175088
![]() |
[42] |
Kornmann B, Walter P (2010) ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 123: 1389–1393. doi: 10.1242/jcs.058636
![]() |
[43] |
Lahiri S, Chao JT, Tavassoli S, et al. (2014) A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol 12: e1001969. doi: 10.1371/journal.pbio.1001969
![]() |
[44] |
Lev S, Ben Halaevy D, Peretti D, et al. (2008) The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 18: 282–290. doi: 10.1016/j.tcb.2008.03.006
![]() |
[45] | Stoica R, De Vos KJ, Paillusson S, et al. (2014) ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun 5: 3996. |
[46] |
De Vos KJ, Morotz GM, Stoica R, et al. (2012) VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 21: 1299–1311. doi: 10.1093/hmg/ddr559
![]() |
[47] | Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114: 867–874. |
[48] |
de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456: 605–610. doi: 10.1038/nature07534
![]() |
[49] |
Filadi R, Greotti E, Turacchio G, et al. (2015) Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA 112: E2174–E2181. doi: 10.1073/pnas.1504880112
![]() |
[50] |
Naon D, Zaninello M, Giacomello M, et al. (2016) Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci USA 113: 11249–11254. doi: 10.1073/pnas.1606786113
![]() |
[51] |
Ouvrier R, Grew S (2010) Mechanisms of disease and clinical features of mutations of the gene for mitofusin 2: an important cause of hereditary peripheral neuropathy with striking clinical variability in children and adults. Dev Med Child Neurol 52: 328–330. doi: 10.1111/j.1469-8749.2010.03613.x
![]() |
[52] |
Wang B, Heath-Engel H, Zhang D, et al. (2008) BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRDeltaF508 via the derlin-1 complex. Cell 133: 1080–1092. doi: 10.1016/j.cell.2008.04.042
![]() |
[53] |
Iwasawa R, Mahul-Mellier AL, Datler C, et al. (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30: 556–568. doi: 10.1038/emboj.2010.346
![]() |
[54] |
Wang B, Nguyen M, Chang NC, et al. (2011) Fis1, Bap31 and the kiss of death between mitochondria and endoplasmic reticulum. EMBO J 30: 451–452. doi: 10.1038/emboj.2010.352
![]() |
[55] |
Ng FW, Nguyen M, Kwan T, et al. (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 139: 327–338. doi: 10.1083/jcb.139.2.327
![]() |
[56] | Rizzuto R, Marchi S, Bonora M, et al. (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787: 1342–1351. |
[57] | Breckenridge DG, Stojanovic M, Marcellus RC, et al. (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160: 1115–1127. |
[58] |
Heath-Engel HM, Wang B, Shore GC (2012) Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31. Biochim Biophys Acta 1823: 335–347. doi: 10.1016/j.bbamcr.2011.11.020
![]() |
[59] | Nguyen M, Breckenridge DG, Ducret A, et al. (2000) Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol Cell Biol 20: 6731–6740. |
[60] |
Wu W, Li W, Chen H, et al. (2016) FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy 12: 1675–1676. doi: 10.1080/15548627.2016.1193656
![]() |
[61] |
Smirnova E, Griparic L, Shurland DL, et al. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12: 2245–2256. doi: 10.1091/mbc.12.8.2245
![]() |
[62] |
Friedman JR, Lackner LL, West M, et al. (2011) ER tubules mark sites of mitochondrial division. Science 334: 358–362. doi: 10.1126/science.1207385
![]() |
[63] | Wang M, Wey S, Zhang Y, et al. (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11: 2307–2316. |
[64] |
Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833: 3460–3470. doi: 10.1016/j.bbamcr.2013.06.028
![]() |
[65] |
Lumley EC, Osborn AR, Scott JC, et al. (2017) Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis. Cell Stress Chaperones 22: 43–54.. doi: 10.1007/s12192-016-0740-2
![]() |
[66] |
Simmen T, Aslan JE, Blagoveshchenskaya AD, et al. (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24: 717–729. doi: 10.1038/sj.emboj.7600559
![]() |
[67] | Cormaci G, Mori T, Hayashi T, et al. (2007) Protein kinase A activation down-regulates, whereas extracellular signal-regulated kinase activation up-regulates sigma-1 receptors in B-104 cells: Implication for neuroplasticity. J Pharmacol Exp Ther 320: 202–210. |
[68] |
Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131: 596–610. doi: 10.1016/j.cell.2007.08.036
![]() |
[69] |
Mori T, Hahashi T, Hayashi E, et al. (2013) Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One 8: e76941. doi: 10.1371/journal.pone.0076941
![]() |
[70] |
Wang J, Saul A, Roon P, et al. (2016) Activation of the molecular chaperone, sigma 1 receptor, preserves cone function in a murine model of inherited retinal degeneration. Proc Natl Acad Sci USA 113: E3764–E3772. doi: 10.1073/pnas.1521749113
![]() |
[71] | Chu UB, Ruoho AE (2016) Biochemical pharmacology of the Sigma-1 receptor. Mol Pharmacol 89: 142–153. |
[72] | Verfaillie T, Rubio N, Garg AD, et al. (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19: 1880–1891. |
[73] |
Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256: 184–185. doi: 10.1126/science.1566067
![]() |
[74] | Karran E, De SB (2016) The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 139 Suppl 2: 237–252. |
[75] |
Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18: 794–799. doi: 10.1038/nn.4017
![]() |
[76] |
Castrillo JI, Oliver SG (2016) Alzheimer's as a systems-level disease involving the interplay of multiple cellular networks. Methods Mol Biol 1303: 3–48. doi: 10.1007/978-1-4939-2627-5_1
![]() |
[77] | Bartley MG, Marquardt K, Kirchhof D, et al. (2012) Overexpression of amyloid-beta protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade. J Alzheimers Dis 28: 855–868. |
[78] |
Benussi L, Ghidroni R, Dal Piaz F, et al. (2017) The level of 24-Hydroxycholesteryl Esters is an Early Marker of Alzheimer's Disease. J Alzheimers Dis 56: 825–833. doi: 10.3233/JAD-160930
![]() |
[79] |
Area-Gomez E, de Groof AJ, Boldogh I, et al. (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175: 1810–1816. doi: 10.2353/ajpath.2009.090219
![]() |
[80] | Leech CA, Kopp RF, Nelson HA, et al. (2016) Stromal Interaction Molecule 1 (STIM1) Regulates ATP-Sensitive Potassium (KATP) and Store-Operated Ca2+ Channels in MIN6 beta-Cells. J Biol Chem 292: 2266–2277. |
[81] |
Tong BC, Lee CS, Cheng WH, et al. (2016) Familial Alzheimer's disease-associated presenilin 1 mutants promote gamma-secretase cleavage of STIM1 to impair store-operated Ca2+ entry. Sci Signal 9: ra89. doi: 10.1126/scisignal.aaf1371
![]() |
[82] | Nelson O, Supnet C, Liu H, et al. (2010) Familial Alzheimer's disease mutations in presenilins: effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. J Alzheimers Dis 21: 781. |
[83] |
Rozpedek W, Markiewicz L, Diehl JA, et al. (2015) Unfolded protein response and PERK kinase as a new therapeutic target in the pathogenesis of Alzheimer's disease. Curr Med Chem 22: 3169–3184. doi: 10.2174/0929867322666150818104254
![]() |
[84] | Al-Chalabi A, van den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13: 96–104.. |
[85] |
Gregianin E, Pallafacchina G, Zanin S, et al. (2016) Loss-of-function mutations in the SIGMAR1 gene cause distal hereditary motor neuropathy by impairing ER-mitochondria tethering and Ca2+ signalling. Hum Mol Genet 25: 3741–3753. doi: 10.1093/hmg/ddw220
![]() |
[86] |
Li X, Hu Z, Liu L, et al. (2015) A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy. Neurology 84: 2430–2437. doi: 10.1212/WNL.0000000000001680
![]() |
[87] |
Watanabe S, Ilieva H, Tamada H, et al. (2016) Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med 8: 1421–1437. doi: 10.15252/emmm.201606403
![]() |
[88] |
Hyrskyluoto A, Pulli I, Tornqvist K, et al. (2013) Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-kappaB pathway. Cell Death Dis 4: e646. doi: 10.1038/cddis.2013.170
![]() |
[89] |
Ono Y, Tanaka H, Nagahara Y, et al. (2014) SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in in vitro and in vivo amyotrophic lateral sclerosis models. Neurosci Lett 559: 174–178. doi: 10.1016/j.neulet.2013.12.005
![]() |
[90] |
Neumann M, Sampathu DM, Kwong LK, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133. doi: 10.1126/science.1134108
![]() |
[91] |
Ambegaokar SS, Jackson GR (2011) Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 20: 4947–4977. doi: 10.1093/hmg/ddr432
![]() |