Citation: Jay L. Brewster. Signaling hubs at ER/mitochondrial membrane associations[J]. AIMS Biophysics, 2017, 4(2): 222-239. doi: 10.3934/biophy.2017.2.222
[1] | MacLennan DH, Rice WJ, Green NM (1997) The mechanism of Ca2+ transport by sarco (endo) plasmic reticulum Ca2+-ATPases. J Biol Chem 272: 28815–28818. doi: 10.1074/jbc.272.46.28815 |
[2] | Clapham DE (1995) Calcium signaling. Cell 80: 259–268. doi: 10.1016/0092-8674(95)90408-5 |
[3] | Clapham DE (2007) Calcium signaling. Cell 131: 1047–1058. doi: 10.1016/j.cell.2007.11.028 |
[4] | Kuhlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13: 89. doi: 10.1186/s12915-015-0201-x |
[5] | Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11: 872–884. doi: 10.1038/nrm3013 |
[6] | Westermann B (2010) Mitochondrial dynamics in model organisms: what yeasts, worms and flies have taught us about fusion and fission of mitochondria. Semin Cell Dev Biol 21: 542–549. doi: 10.1016/j.semcdb.2009.12.003 |
[7] | Archer SL (2013) Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 369: 2236–2251. doi: 10.1056/NEJMra1215233 |
[8] | Daum B, Walter A, Horst A, et al. (2013) Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci USA 110: 15301–15306. doi: 10.1073/pnas.1305462110 |
[9] | Robertson JD (1960) The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol 10: 343–418. |
[10] | Rizzuto R, Pinton P, Carrington W, et al. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763–1766. doi: 10.1126/science.280.5370.1763 |
[11] | Garcia-Perez C, Roy SS, Naghdi S, et al. (2012) Bid-induced mitochondrial membrane permeabilization waves propagated by local reactive oxygen species (ROS) signaling. Proc Natl Acad Sci USA 109: 4497–4502. doi: 10.1073/pnas.1118244109 |
[12] | Williams A, Hayashi T, Wolozny D, et al. (2016) The non-apoptotic action of Bcl-xL: regulating Ca(2+) signaling and bioenergetics at the ER-mitochondrion interface. J Bioenerg Biomembr 48: 211–225. doi: 10.1007/s10863-016-9664-x |
[13] | Giorgi C, Bonora M, Sorrentino G, et al. (2015) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA 112: 1779–1784. doi: 10.1073/pnas.1410723112 |
[14] | Haupt S, Raghu D, Haupt Y (2015) p53 Calls upon CIA (Calcium Induced Apoptosis) to Counter Stress. Front Oncol 5: 57. |
[15] | Brisac C, Teoule F, Autret A, et al. (2010) Calcium flux between the endoplasmic reticulum and mitochondrion contributes to poliovirus-induced apoptosis. J Virol 84: 12226–12235. |
[16] | Luciani DS, Gwiazda KS, Yang TL, et al. (2009) Roles of IP3R and RyR Ca2+ channels in endoplasmic reticulum stress and beta-cell death. Diabetes 58: 422–432. doi: 10.2337/db07-1762 |
[17] | Toglia P, Ullah G (2016) The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer's disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore. Cell Calcium 60: 13–24. doi: 10.1016/j.ceca.2016.05.002 |
[18] | Szabadkai G, Bianchi K, Varnai P, et al. (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175: 901–911. doi: 10.1083/jcb.200608073 |
[19] | Csordas G, Renken C, Varnai P, et al. (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174: 915–921. doi: 10.1083/jcb.200604016 |
[20] | Hansford RG (1994) Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr 26: 495–508. doi: 10.1007/BF00762734 |
[21] | Rutter GA, Burnett P, Rizzuto R, et al. (1996) Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci USA 93: 5489–5494. doi: 10.1073/pnas.93.11.5489 |
[22] | Palty R, Hershfinkel M, Sekler I (2012) Molecular identity and functional properties of the mitochondrial Na+/Ca2+ exchanger. J Biol Chem 287: 31650–31657. doi: 10.1074/jbc.R112.355867 |
[23] | Adam-Vizi V, Starkov AA (2010) Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J Alzheimers Dis 20 Suppl 2: S413–S426. |
[24] | Hansson MJ, Mansson R, Morota S, et al. (2008) Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med 45: 284–294. doi: 10.1016/j.freeradbiomed.2008.04.021 |
[25] | Varanita T, Soriano ME, Romanello V, et al. (2015) The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21: 834–844. doi: 10.1016/j.cmet.2015.05.007 |
[26] | Sonnino S, Prinetti A (2013) Membrane domains and the "lipid raft" concept. Curr Med Chem 20: 4–21. |
[27] | Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265: 7248–7256. |
[28] | Rusinol AE, Cui Z, Chen MH, et al. (1994) A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269: 27494–27502. |
[29] | Tessitore A, del P Martin M, Sano R, et al. (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15: 753–766. doi: 10.1016/j.molcel.2004.08.029 |
[30] | Sano R, Annuziata I, Patterson A, et al. (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36: 500–511. doi: 10.1016/j.molcel.2009.10.021 |
[31] | Annunziata I, Patterson A, D'Azzo A (2013) Mitochondria-associated ER membranes (MAMs) and glycosphingolipid enriched microdomains (GEMs): isolation from mouse brain. J Vis Exp 73: e50215. |
[32] | Garofalo T, Matarrese P, Manganeli V, et al. (2016) Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation. Autophagy 12: 917–935. doi: 10.1080/15548627.2016.1160971 |
[33] | Pomorski TG, Menon AK (2016) Lipid somersaults: Uncovering the mechanisms of protein-mediated lipid flipping. Prog Lipid Res 64: 69–84. doi: 10.1016/j.plipres.2016.08.003 |
[34] | Vance JE, Aasman EJ, Szarka R (1991) Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J Biol Chem 266: 8241–8247. |
[35] | Lev S (2010) Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol 11: 739–750. doi: 10.1038/nrm2971 |
[36] | D'Angelo G, Vicinanza M, De Matteis MA (2008) Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 20: 360–370. doi: 10.1016/j.ceb.2008.03.013 |
[37] | Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24: 44–52. doi: 10.1016/j.tcb.2013.07.011 |
[38] | Miller WL (2013) Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol 379: 62–73. doi: 10.1016/j.mce.2013.04.014 |
[39] | Salavila A, Navarrolerida I, Sanchezalvarez M, et al. (2016) Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci Rep 6: 27351. |
[40] | Kojima R, Endo T, Tamura Y (2016) A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro. Sci Rep 6: 30777. doi: 10.1038/srep30777 |
[41] | Kornmann B, Currie E, Collins SR, et al. (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325: 477–481. doi: 10.1126/science.1175088 |
[42] | Kornmann B, Walter P (2010) ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 123: 1389–1393. doi: 10.1242/jcs.058636 |
[43] | Lahiri S, Chao JT, Tavassoli S, et al. (2014) A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol 12: e1001969. doi: 10.1371/journal.pbio.1001969 |
[44] | Lev S, Ben Halaevy D, Peretti D, et al. (2008) The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 18: 282–290. doi: 10.1016/j.tcb.2008.03.006 |
[45] | Stoica R, De Vos KJ, Paillusson S, et al. (2014) ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun 5: 3996. |
[46] | De Vos KJ, Morotz GM, Stoica R, et al. (2012) VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 21: 1299–1311. doi: 10.1093/hmg/ddr559 |
[47] | Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114: 867–874. |
[48] | de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456: 605–610. doi: 10.1038/nature07534 |
[49] | Filadi R, Greotti E, Turacchio G, et al. (2015) Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA 112: E2174–E2181. doi: 10.1073/pnas.1504880112 |
[50] | Naon D, Zaninello M, Giacomello M, et al. (2016) Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci USA 113: 11249–11254. doi: 10.1073/pnas.1606786113 |
[51] | Ouvrier R, Grew S (2010) Mechanisms of disease and clinical features of mutations of the gene for mitofusin 2: an important cause of hereditary peripheral neuropathy with striking clinical variability in children and adults. Dev Med Child Neurol 52: 328–330. doi: 10.1111/j.1469-8749.2010.03613.x |
[52] | Wang B, Heath-Engel H, Zhang D, et al. (2008) BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRDeltaF508 via the derlin-1 complex. Cell 133: 1080–1092. doi: 10.1016/j.cell.2008.04.042 |
[53] | Iwasawa R, Mahul-Mellier AL, Datler C, et al. (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30: 556–568. doi: 10.1038/emboj.2010.346 |
[54] | Wang B, Nguyen M, Chang NC, et al. (2011) Fis1, Bap31 and the kiss of death between mitochondria and endoplasmic reticulum. EMBO J 30: 451–452. doi: 10.1038/emboj.2010.352 |
[55] | Ng FW, Nguyen M, Kwan T, et al. (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 139: 327–338. doi: 10.1083/jcb.139.2.327 |
[56] | Rizzuto R, Marchi S, Bonora M, et al. (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787: 1342–1351. |
[57] | Breckenridge DG, Stojanovic M, Marcellus RC, et al. (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160: 1115–1127. |
[58] | Heath-Engel HM, Wang B, Shore GC (2012) Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31. Biochim Biophys Acta 1823: 335–347. doi: 10.1016/j.bbamcr.2011.11.020 |
[59] | Nguyen M, Breckenridge DG, Ducret A, et al. (2000) Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol Cell Biol 20: 6731–6740. |
[60] | Wu W, Li W, Chen H, et al. (2016) FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy 12: 1675–1676. doi: 10.1080/15548627.2016.1193656 |
[61] | Smirnova E, Griparic L, Shurland DL, et al. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12: 2245–2256. doi: 10.1091/mbc.12.8.2245 |
[62] | Friedman JR, Lackner LL, West M, et al. (2011) ER tubules mark sites of mitochondrial division. Science 334: 358–362. doi: 10.1126/science.1207385 |
[63] | Wang M, Wey S, Zhang Y, et al. (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11: 2307–2316. |
[64] | Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833: 3460–3470. doi: 10.1016/j.bbamcr.2013.06.028 |
[65] | Lumley EC, Osborn AR, Scott JC, et al. (2017) Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis. Cell Stress Chaperones 22: 43–54.. doi: 10.1007/s12192-016-0740-2 |
[66] | Simmen T, Aslan JE, Blagoveshchenskaya AD, et al. (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24: 717–729. doi: 10.1038/sj.emboj.7600559 |
[67] | Cormaci G, Mori T, Hayashi T, et al. (2007) Protein kinase A activation down-regulates, whereas extracellular signal-regulated kinase activation up-regulates sigma-1 receptors in B-104 cells: Implication for neuroplasticity. J Pharmacol Exp Ther 320: 202–210. |
[68] | Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131: 596–610. doi: 10.1016/j.cell.2007.08.036 |
[69] | Mori T, Hahashi T, Hayashi E, et al. (2013) Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One 8: e76941. doi: 10.1371/journal.pone.0076941 |
[70] | Wang J, Saul A, Roon P, et al. (2016) Activation of the molecular chaperone, sigma 1 receptor, preserves cone function in a murine model of inherited retinal degeneration. Proc Natl Acad Sci USA 113: E3764–E3772. doi: 10.1073/pnas.1521749113 |
[71] | Chu UB, Ruoho AE (2016) Biochemical pharmacology of the Sigma-1 receptor. Mol Pharmacol 89: 142–153. |
[72] | Verfaillie T, Rubio N, Garg AD, et al. (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19: 1880–1891. |
[73] | Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256: 184–185. doi: 10.1126/science.1566067 |
[74] | Karran E, De SB (2016) The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 139 Suppl 2: 237–252. |
[75] | Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18: 794–799. doi: 10.1038/nn.4017 |
[76] | Castrillo JI, Oliver SG (2016) Alzheimer's as a systems-level disease involving the interplay of multiple cellular networks. Methods Mol Biol 1303: 3–48. doi: 10.1007/978-1-4939-2627-5_1 |
[77] | Bartley MG, Marquardt K, Kirchhof D, et al. (2012) Overexpression of amyloid-beta protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade. J Alzheimers Dis 28: 855–868. |
[78] | Benussi L, Ghidroni R, Dal Piaz F, et al. (2017) The level of 24-Hydroxycholesteryl Esters is an Early Marker of Alzheimer's Disease. J Alzheimers Dis 56: 825–833. doi: 10.3233/JAD-160930 |
[79] | Area-Gomez E, de Groof AJ, Boldogh I, et al. (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175: 1810–1816. doi: 10.2353/ajpath.2009.090219 |
[80] | Leech CA, Kopp RF, Nelson HA, et al. (2016) Stromal Interaction Molecule 1 (STIM1) Regulates ATP-Sensitive Potassium (KATP) and Store-Operated Ca2+ Channels in MIN6 beta-Cells. J Biol Chem 292: 2266–2277. |
[81] | Tong BC, Lee CS, Cheng WH, et al. (2016) Familial Alzheimer's disease-associated presenilin 1 mutants promote gamma-secretase cleavage of STIM1 to impair store-operated Ca2+ entry. Sci Signal 9: ra89. doi: 10.1126/scisignal.aaf1371 |
[82] | Nelson O, Supnet C, Liu H, et al. (2010) Familial Alzheimer's disease mutations in presenilins: effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. J Alzheimers Dis 21: 781. |
[83] | Rozpedek W, Markiewicz L, Diehl JA, et al. (2015) Unfolded protein response and PERK kinase as a new therapeutic target in the pathogenesis of Alzheimer's disease. Curr Med Chem 22: 3169–3184. doi: 10.2174/0929867322666150818104254 |
[84] | Al-Chalabi A, van den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13: 96–104.. |
[85] | Gregianin E, Pallafacchina G, Zanin S, et al. (2016) Loss-of-function mutations in the SIGMAR1 gene cause distal hereditary motor neuropathy by impairing ER-mitochondria tethering and Ca2+ signalling. Hum Mol Genet 25: 3741–3753. doi: 10.1093/hmg/ddw220 |
[86] | Li X, Hu Z, Liu L, et al. (2015) A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy. Neurology 84: 2430–2437. doi: 10.1212/WNL.0000000000001680 |
[87] | Watanabe S, Ilieva H, Tamada H, et al. (2016) Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med 8: 1421–1437. doi: 10.15252/emmm.201606403 |
[88] | Hyrskyluoto A, Pulli I, Tornqvist K, et al. (2013) Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-kappaB pathway. Cell Death Dis 4: e646. doi: 10.1038/cddis.2013.170 |
[89] | Ono Y, Tanaka H, Nagahara Y, et al. (2014) SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in in vitro and in vivo amyotrophic lateral sclerosis models. Neurosci Lett 559: 174–178. doi: 10.1016/j.neulet.2013.12.005 |
[90] | Neumann M, Sampathu DM, Kwong LK, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133. doi: 10.1126/science.1134108 |
[91] | Ambegaokar SS, Jackson GR (2011) Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 20: 4947–4977. doi: 10.1093/hmg/ddr432 |