Citation: Min Zhang, Shijun Lin, Wendi Xiao, Danhua Chen, Dongxia Yang, Youming Zhang. Applications of single-cell sequencing for human lung cancer: the progress and the future perspective[J]. AIMS Biophysics, 2017, 4(2): 210-221. doi: 10.3934/biophy.2017.2.210
[1] | Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65: 5–29. doi: 10.3322/caac.21254 |
[2] | Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359: 1367–1380. doi: 10.1056/NEJMra0802714 |
[3] | Wang Y, Navin NE (2015) Advances and applications of single-cell sequencing technologies. Mol Cell 58: 598–609. doi: 10.1016/j.molcel.2015.05.005 |
[4] | Navin NE (2015) The first five years of single-cell cancer genomics and beyond. Genome Res 25: 1499–1507. doi: 10.1101/gr.191098.115 |
[5] | Mroz EA, Tward AD, Pickering CR, et al. (2013) High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 119: 3034–3042. doi: 10.1002/cncr.28150 |
[6] | Xu X, Hou Y, Yin X, et al. (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148: 886–895. doi: 10.1016/j.cell.2012.02.025 |
[7] | Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17: 175–188. doi: 10.1038/nrg.2015.16 |
[8] | Kreso A, O'Brien CA, van Galen P, et al. (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339: 543–548. doi: 10.1126/science.1227670 |
[9] | Ding L, Ellis MJ, Li S, et al. (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464: 999–1005. doi: 10.1038/nature08989 |
[10] | Emmert-Buck MR, Bonner RF, Smith PD, et al. (1996) Laser capture microdissection. Science 274: 998–1001. doi: 10.1126/science.274.5289.998 |
[11] | Altomare L, Borgatti M, Medoro G, et al. (2003) Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnol Bioeng 82: 474–479. doi: 10.1002/bit.10590 |
[12] | Choi JH, Ogunniyi AO, Du M, et al. (2010) Development and optimization of a process for automated recovery of single cells identified by microengraving. Biotechnol Prog 26: 888–895. doi: 10.1002/btpr.374 |
[13] | Adams DL, Martin SS, Alpaugh RK, et al. (2014) Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci USA 111: 3514–3519. doi: 10.1073/pnas.1320198111 |
[14] | Leung ML, Wang Y, Waters J, et al. (2015) SNES: single nucleus exome sequencing. Genome Biol 16: 55. doi: 10.1186/s13059-015-0616-2 |
[15] | Livesey FJ (2003) Strategies for microarray analysis of limiting amounts of RNA. Brief Funct Genomic Proteomic 2: 31–36. doi: 10.1093/bfgp/2.1.31 |
[16] | Zhang CZ, Adalsteinsson VA, Francis J, et al. (2015) Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat Commun 6: 6822. |
[17] | Navin N, Kendall J, Troge J, et al. (2011) Tumour evolution inferred by single-cell sequencing. Nature 472: 90–94. doi: 10.1038/nature09807 |
[18] | Baslan T, Kendall J, Rodgers L, et al. (2012) Genome-wide copy number analysis of single cells. Nat Protoc 7: 1024–1041. doi: 10.1038/nprot.2012.039 |
[19] | Hou Y, Song L, Zhu P, et al. (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148: 873–885. |
[20] | Zong C, Lu S, Chapman AR, et al. (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338: 1622–1626. doi: 10.1126/science.1229164 |
[21] | Wang Y, Waters J, Leung ML, et al. (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512: 155–160. doi: 10.1038/nature13600 |
[22] | Zhang C, Zhang C, Chen S, et al. (2013) A single cell level based method for copy number variation analysis by low coverage massively parallel sequencing. PLoS One 8: e54236. doi: 10.1371/journal.pone.0054236 |
[23] | Zhang C, Cai H, Huang J, et al. (2016) nbCNV: a multi-constrained optimization model for discovering copy number variants in single-cell sequencing data. BMC Bioinformatics 17: 384. doi: 10.1186/s12859-016-1239-7 |
[24] | Marinov GK, Williams BA, McCue K, et al. (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24: 496–510. |
[25] | Zhang X, Marjani SL, Hu Z, et al. (2016) Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res 76: 1305–1312. doi: 10.1158/0008-5472.CAN-15-1907 |
[26] | Kim KT, Lee HW, Lee HO, et al. (2015) Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol 16: 127. |
[27] | Saliba AE, Westermann AJ, Gorski SA, et al. (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42: 8845–8860. doi: 10.1093/nar/gku555 |
[28] | Tang F, Barbacioru C, Wang Y, et al. (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6: 377–382. doi: 10.1038/nmeth.1315 |
[29] | Ramskold D, Luo S, Wang YC, et al. (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30: 777–782. doi: 10.1038/nbt.2282 |
[30] | Islam S, Zeisel A, Joost S, et al. (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11: 163–166. |
[31] | Pollen AA, Nowakowski TJ, Shuga J, et al. (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32: 1053–1058. doi: 10.1038/nbt.2967 |
[32] | Eirew P, Steif A, Khattra J, et al. (2015) Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518: 422–426. |
[33] | Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16: 133–145. |
[34] | Picelli S, Faridani OR, Bjorklund AK, et al. (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9: 171–181. doi: 10.1038/nprot.2014.006 |
[35] | Hashimshony T, Wagner F, Sher N, et al. (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2: 666–673. doi: 10.1016/j.celrep.2012.08.003 |
[36] | Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343: 776–779. doi: 10.1126/science.1247651 |
[37] | Islam S, Kjallquist U, Moliner A, et al. (2012) Highly multiplexed and strand-specific single-cell RNA 5' end sequencing. Nat Protoc 7: 813–828. doi: 10.1038/nprot.2012.022 |
[38] | Macaulay IC, Haerty W, Kumar P, et al. (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12: 519–522. doi: 10.1038/nmeth.3370 |
[39] | Dey SS, Kester L, Spanjaard B, et al. (2015) Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol 33: 285–289. |
[40] | Jin W, Tang Q, Wan M, et al. (2015) Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528: 142–146. |
[41] | Ziller MJ, Gu H, Muller F, et al. (2015) Charting a dynamic DNA methylation landscape of the human genome. Nature 500: 477–481. |
[42] | Hovestadt V, Jones DT, Picelli S, et al. (2014) Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510: 537–541. doi: 10.1038/nature13268 |
[43] | Guo H, Zhu P, Guo F, et al. (2015) Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 10: 645–659. |
[44] | Smallwood SA, Lee HJ, Angermueller C, et al. (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11: 817–820. doi: 10.1038/nmeth.3035 |
[45] | Suzuki A, Matsushima K, Makinoshima H, et al. (2015) Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment. Genome Biol 16: 66. |
[46] | Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511: 543–550. |
[47] | Willers H, Azzoli CG, Santivasi WL, et al. (2013) Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J 19: 200–207. doi: 10.1097/PPO.0b013e318292e4e3 |
[48] | Navin N, Krasnitz A, Rodgers L, et al. (2010) Inferring tumor progression from genomic heterogeneity. Genome Res 20: 68–80. |
[49] | Dawson SJ, Tsui DW, Murtaza M, et al. (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368: 1199–1209. doi: 10.1056/NEJMoa1213261 |
[50] | Jamal-Hanjani M, Hackshaw A, Ngai Y, et al. (2014) Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol 12: e1001906. doi: 10.1371/journal.pbio.1001906 |
[51] | Min JW, Kim WJ, Han JA, et al. (2015) Identification of distinct tumor subpopulations in lung adenocarcinoma via single-cell RNA-seq. PLoS One 10: e0135817. doi: 10.1371/journal.pone.0135817 |
[52] | Heitzer E, Auer M, Ulz P, et al. (2013) Circulating tumor cells and DNA as liquid biopsies. Genome Med 5: 73. doi: 10.1186/gm477 |
[53] | Morimoto A, Mogami T, Watanabe M, et al. (2015) High-density dielectrophoretic microwell array for detection, capture, and single-cell analysis of rare tumor cells in peripheral blood. PLoS One 10: e0130418. |
[54] | Ni X, Zhuo M, Su Z, et al. (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 110: 21083–21088. doi: 10.1073/pnas.1320659110 |
[55] | Ran R, Li L, Wang M, et al. (2013) Determination of EGFR mutations in single cells microdissected from enriched lung tumor cells in peripheral blood. Anal Bioanal Chem 405: 7377–7382. |
[56] | Carter L, Rothwell DG, Mesquita B, et al. (2017) Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med 23: 114–119. |
[57] | Park SM, Wong DJ, Ooi CC, et al. (2016) Molecular profiling of single circulating tumor cells from lung cancer patients. Proc Natl Acad Sci USA 113: E8379–E8386. doi: 10.1073/pnas.1608461113 |
[58] | Shi Q, Qin L, Wei W, et al. (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci USA 109: 419–424. doi: 10.1073/pnas.1110865109 |
[59] | Byrd TFt, Hoang LT, Kim EG, et al. (2014) The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay. Sci Rep 4: 5117. |
[60] | Nguyen TA, Yin TI, Reyes D, et al. (2013) Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem 85: 11068–11076. doi: 10.1021/ac402761s |
[61] | Buxbaum AR, Yoon YJ, Singer RH, et al. (2015) Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol 25: 468–475. |
[62] | Schmidt F, Efferth T (2016) Tumor heterogeneity, single-cell sequencing, and drug resistance. Pharmaceuticals 9: 33. doi: 10.3390/ph9020033 |