Citation: Stefania Torino, Mario Iodice, Ivo Rendina, Giuseppe Coppola. Microfluidic technology for cell hydrodynamic manipulation[J]. AIMS Biophysics, 2017, 4(2): 178-191. doi: 10.3934/biophy.2017.2.178
[1] | Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-A review. J Mioromech Microeng 3: 168–182. doi: 10.1088/0960-1317/3/4/002 |
[2] | Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36: 381–411. doi: 10.1146/annurev.fluid.36.050802.122124 |
[3] | McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35: 491–499. |
[4] | Whitesides GM, Ostuni E, Takayama S, et al. (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3: 335–373. doi: 10.1146/annurev.bioeng.3.1.335 |
[5] | Kamei K, MashimoY, Koyama Y, et al. (2015) 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed Microdevices 17: 36. doi: 10.1007/s10544-015-9928-y |
[6] | Dua G, Fanga Q, den Toonderb JMJ (2016) Microfluidics for cell-based high throughput screening platforms-A review. Analytica Chimica Acta 903: 36–50. doi: 10.1016/j.aca.2015.11.023 |
[7] | Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Bio 16: 554–567. doi: 10.1038/nrm4041 |
[8] | Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507: 181–189. doi: 10.1038/nature13118 |
[9] | Yun H, Kim K, Lee WG (2013) Cell manipulation in microfluidics. Biofabrication 5: 022001. doi: 10.1088/1758-5082/5/2/022001 |
[10] | Mu X, Zheng W, Sun J, et al. (2013) Microfluidics for manipulating cells. Small 9: 9–21. doi: 10.1002/smll.201200996 |
[11] | Chau LH, Liang W, Cheung FWK, et al. (2013) Self-rotation of cells in an irrotational AC E-field in an opto-electrokinetics chip. PLoS One 8: e51577. doi: 10.1371/journal.pone.0051577 |
[12] | Shafiee H, Caldwell JL, Sano MB, et al. (2009) Contactless dielectrophoresis: A new technique for cell manipulation. Biomed Microdevices 11: 997–1006. doi: 10.1007/s10544-009-9317-5 |
[13] | Benhal P, Chase JG, Gaynor P, et al. (2014) AC electric field induced dipole-based on-chip 3D cell rotation. Lab Chip 14: 2717–2727. doi: 10.1039/c4lc00312h |
[14] | Ashkin A, Dziedzic JM (1971) Optical levitation by radiation pressure. Appl Phys Lett 19: 283–285. doi: 10.1063/1.1653919 |
[15] | Grier DG (2003) A revolution in optical manipulation. Nature 424: 810–816. doi: 10.1038/nature01935 |
[16] | Guck J, Ananthakrishnan R, Mahmood H, et al. (2002) Stretching biological cells with light. J Phys Condens Matter 14: 4843–4856. doi: 10.1088/0953-8984/14/19/311 |
[17] | Sraj I, Eggleton CD, Jimenez R, et al. (2010) Cell deformation cytometry using diode-bar optical stretchers. J Biomed Opt 15: 047010. doi: 10.1117/1.3470124 |
[18] | Bruus H (2011) Acoustofluidics 1: Governing equations in microfluidics. Lab Chip 11: 3742–3751. doi: 10.1039/c1lc20658c |
[19] | Yasuda K, Umemura S, Takeda K (1995) Concentration and fractionation of small particles in liquid by ultrasound. Jpn J Appl Phys 34: 2715–2720. doi: 10.1143/JJAP.34.2715 |
[20] | Pamme N (2006) Magnetism and microfluidics. Lab Chip 6: 24–38. doi: 10.1039/B513005K |
[21] | Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7: 021501. doi: 10.1063/1.4799787 |
[22] | Bruus H, (2008) Theoretical microfluidics (Oxford master series in physics), 1 Eds., New York: Oxford University Press. |
[23] | Brody JP, Yager P, Goldstein RE, et al. (1996) Biotechnology at low reynolds numbers. Biophys J 71: 3430–3441. |
[24] | Shapiro HM, (2005) Practical flow cytometry, 4 Eds., New York: Wiley-Liss. |
[25] | Huh D, Gu W, Kamotani Y, et al. (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26: R73. doi: 10.1088/0967-3334/26/3/R02 |
[26] | Chung TD, Kim HC (2007) Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis 28: 4511–4520. doi: 10.1002/elps.200700620 |
[27] | Ateya DA, Erickson JS, Howell PB, et al. (2008) The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem 391: 1485–1498. doi: 10.1007/s00216-007-1827-5 |
[28] | Godin J, Chen CH, Cho SH (2008) Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip. J Biophoton 1: 355–376. doi: 10.1002/jbio.200810018 |
[29] | Watkins N, Venkatesan BM, Toner M, et al. (2009) A robust electrical microcytometer with 3-dimensional hydrofocusing. Lab Chip 9: 3177–3184. doi: 10.1039/b912214a |
[30] | Schonbrun E, Gorthi S, Schaak D (2012) Microfabricated multiple field of view imaging flow cytometry. Lab Chip 12: 268–273. doi: 10.1039/C1LC20843H |
[31] | Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab on a Chip 10: 274–280. doi: 10.1039/B919495A |
[32] | Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5: 022206. |
[33] | Torino S, Iodice M, Rendina I, et al. (2015) Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration. Biomicrofluidics 9: 064107. doi: 10.1063/1.4936260 |
[34] | Zhang J, Yan S, Yuan D, et al. (2016) Fundamentals and applications of inertial microfluidics: A review. Lab Chip 16: 10–34. doi: 10.1039/C5LC01159K |
[35] | Warkiani ME, Tay AKP, Khoo BL (2015) Malaria detection using inertial microfluidics. Lab Chip 15: 1101–1109. |
[36] | Di Carlo D (2009) Inertial microfluidics. Lab Chip 9: 3038–3046. |
[37] | Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, et al. (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9: 2973–2980. doi: 10.1039/b908271a |
[38] | Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, et al. (2010) Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdevices 12: 187–195. doi: 10.1007/s10544-009-9374-9 |
[39] | Segré G, Silberberg A (1961) Radial particle displacements in poiseuille flow of suspensions. Nature 189: 209–210. |
[40] | Recktenwald D, Radbruch A, (1998) Cell separation methods and applications, New York: Marcel Dekker, Inc. |
[41] | Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6: 83–89. doi: 10.1039/B512049G |
[42] | Foley G (2006) A review of factors affecting filter cake properties in dead-end microfiltration of microbial suspensions. J Membr Sci 274: 38–46. doi: 10.1016/j.memsci.2005.12.008 |
[43] | Huang LR, Cox EC, Austin RH, et al. (2004) Continuous particle separation through deterministic lateral displacement. Science 304: 987–990. doi: 10.1126/science.1094567 |
[44] | Holm SH, Beech JP, Barrett MP, et al. (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11: 1326–1332. doi: 10.1039/c0lc00560f |
[45] | Lee W, Tseng P, Di Carlo D, (2017) Microtechnology for cell manipulation and sorting, Springer International Publishing. |
[46] | Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260: 1456. doi: 10.1126/science.8502990 |
[47] | Huang Y, Yang Y, Wang XB, et al. (2004) The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation. J Hematoth Stem Cell 8: 481–490. |
[48] | Vykoukal J, Vykoukal DM, Freyberg S, et al. (2008) Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation. Lab Chip 8: 1386–1393. doi: 10.1039/b717043b |
[49] | Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76: 5465–5471. doi: 10.1021/ac049863r |
[50] | Vig AL, Kristensen A (2008) Separation enhancement in pinched flow fractionation. Appl Phys Lett 93: 203507. |
[51] | Di Carlo D, Edd JF, Irimia D, et al. (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80: 2204–2211. doi: 10.1021/ac702283m |
[52] | Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, et al. (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9: 2973–2980. doi: 10.1039/b908271a |
[53] | Wu Z, Willing B, Bjerketorp J, et al. (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9: 1193–1199. doi: 10.1039/b817611f |
[54] | Park JS, Song SH, Jung HI (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9: 939–948. doi: 10.1039/B813952K |
[55] | Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78: 4925–4930. doi: 10.1021/ac060541s |
[56] | Yue W, Li CW, Xu T, et al. (2011) Integrated sieving microstructures on microchannels for biological cell trapping and droplet formation. Lab Chip 11: 3352–3355. doi: 10.1039/c1lc20446g |
[57] | Yun H, Hur SJC (2013) Sequential multi-molecule delivery using vortex-assisted electroporation. Lab Chip 13: 2764–2772. doi: 10.1039/c3lc50196e |
[58] | Chung K, Rivet CA, Kemp ML, et al. (2011) Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array. Anal Chem 83: 7044–7052. doi: 10.1021/ac2011153 |
[59] | Hagiwara M, Kawahara T, Arai F (2012) Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations. Appl Phys Lett 101: 074102. doi: 10.1063/1.4746247 |
[60] | Khalili AA, Ahmad MR, Takeuchi M, et al. (2015) A microfluidic device for hydrodynamic trapping and manipulation platform of a single biological cell. Appl Sci 6: 40. |
[61] | Jefferey JB (1992) The motion of ellipsoidal particles immersed in a viscous fluid. Proc Royal Soc A 102: 161–179. |
[62] | Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22: 385–400. doi: 10.1017/S0022112065000824 |
[63] | Bretherton FP (1962) The motion of rigid particles in a shear flow at low Reynolds number. J Fluid Mech 14: 284–304. |
[64] | Arbaret L, Mancktelow NS, Burg JP (2001) Effect of shape and orientation on rigid particle rotation and matrix deformation in simple shear flow. J Struct Geol 23: 113–125. doi: 10.1016/S0191-8141(00)00067-5 |
[65] | Lael LG (1980) Particle motion in a viscous fluid. Ann Rev Fluid Mech 12: 435–476. doi: 10.1146/annurev.fl.12.010180.002251 |
[66] | Gallily I, Eisner AD (1979) On the orderly nature of the motion of nonspherical aerosol particles. I. Deposition from a laminar flow. J Colloid Interface Sci 68: 320–337. |
[67] | Fan FG, Ahmadi G (1995) A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J Aerosol Sci 26: 813–840. doi: 10.1016/0021-8502(95)00021-4 |
[68] | Yin C, Rosendahl L, Kær SK, et al. (2003) Modelling the motion of cylindrical particles in a nonuniform flow. Chem Eng Sci 58: 3489–3498. doi: 10.1016/S0009-2509(03)00214-8 |
[69] | Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83: 97–117. doi: 10.1017/S0022112077001062 |
[70] | Ingber MS, Mondy LA (1994) A numerical study of three-dimensional Jeffery orbits in shear flow. J Rheol 38: 1829. doi: 10.1122/1.550604 |
[71] | Shelbya JP, Chiu DT (2004) Controlled rotation of biological micro- and nano-particles in microvortices. Lab Chip 4: 168–170. doi: 10.1039/b402479f |
[72] | Lim DSW, Shelby JP, Kuo JS, et al. (2003) Dynamic formation of ring-shaped patterns of colloidal particles in microfluidic systems. Appl Phys Lett 83: 1145. doi: 10.1063/1.1600532 |
[73] | Zhou J, Kasper S, Papautsky I (2013) Enhanced size-dependent trapping of particles using microvortices. Microfluid Nanofluid 15: 611–623. doi: 10.1007/s10404-013-1176-y |
[74] | Torino S, Iodice M, Rendina I, et al. (2016) A microfluidic approach for inducing cell rotation by means of hydrodynamic forces. Sensors 16: 1326. doi: 10.3390/s16081326 |
[75] | Zheng M, Shan JW, Lin H (2016) Hydrodynamically controlled cell rotation in an electroporation microchip to circumferentially deliver molecules into single cells. Microfluid Nanofluid 20: 16. doi: 10.1007/s10404-015-1691-0 |
[76] | Kolb T, Albert S, Haug M, et al. (2015) Optofluidic rotation of living cells for single-cell tomography. J Biophotonics 8: 239–246. doi: 10.1002/jbio.201300196 |