Citation: Nily Dan. Membrane-induced interactions between curvature-generating protein domains: the role of area perturbation[J]. AIMS Biophysics, 2017, 4(1): 107-120. doi: 10.3934/biophy.2017.1.107
[1] | McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438: 590–596. doi: 10.1038/nature04396 |
[2] | Jao CC, Hegde BG, Gallop JL, et al. (2010) Roles of Amphipathic Helices and the Bin/Amphiphysin/Rvs (BAR) Domain of Endophilin in Membrane Curvature Generation. J Biol Chem 285: 20164–20170. doi: 10.1074/jbc.M110.127811 |
[3] | Mim C, Cui H, Gawronski-Salerno JA, et al. (2012) Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149: 137–145. doi: 10.1016/j.cell.2012.01.048 |
[4] | Mim C, Unger VM (2012) Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37: 526–533. doi: 10.1016/j.tibs.2012.09.001 |
[5] | Suarez A, Ueno T, Huebner R, et al. (2014) Bin/Amphiphysin/Rvs (BAR) family members bend membranes in cells. Sci Rep 4: 4693. |
[6] | Liu S, Xiong X, Zhao X, et al. (2015) F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. J Hem & Onc 8: 47. |
[7] | Peter BJ, Kent HM, Mills IG, et al. (2004) BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science 303: 495–499. doi: 10.1126/science.1092586 |
[8] | Blood PD, Voth GA (2006) Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. PNAS 103: 15068–15072. doi: 10.1073/pnas.0603917103 |
[9] | Blood PD, Swenson RD, Voth GA (2008) Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations. Biophys J 95: 1866–1876. doi: 10.1529/biophysj.107.121160 |
[10] | Cui H, Ayton GS, Voth GA (2009) Membrane Binding by the Endophilin N-BAR Domain. Biophys J 97: 2746–2753. doi: 10.1016/j.bpj.2009.08.043 |
[11] | Takei K, Slepnev VI, Haucke V, et al. (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nature Cell Biol 1: 33–39. doi: 10.1038/9004 |
[12] | Frost A, Perera R, Roux A, et al. (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132: 807–817. doi: 10.1016/j.cell.2007.12.041 |
[13] | Simunovic M, Mim C, Marlovits TC, et al. (2013) Protein-mediated transformation of lipid vesicles into tubular networks. Biophys J 105: 711–719. doi: 10.1016/j.bpj.2013.06.039 |
[14] | Simunovic M, Srivastava A, Voth GA (2013) Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. PNAS 110: 20396–20401. doi: 10.1073/pnas.1309819110 |
[15] | Schweitzer Y, Kozlov MM (2015) Membrane-Mediated Interaction between Strongly Anisotropic Protein Scaffolds. Plos Comput Biol 11: e1004054. doi: 10.1371/journal.pcbi.1004054 |
[16] | Schweitzer Y, Shemesh T, Kozlov MM (2015) A model for shaping membrane sheets by protein scaffolds. Biophys J 109: 564–573. doi: 10.1016/j.bpj.2015.06.001 |
[17] | Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nature Rev Molec Cell Biol 7: 9–19. |
[18] | Khelashvili G, Harries D, Weinstein H (2009) Modeling membrane deformations and lipid demixing upon protein-membrane interaction: The BAR dimer adsorption. Biophys J 97: 1626–1635. doi: 10.1016/j.bpj.2009.07.006 |
[19] | Campelo F, Fabrikant G, McMahon HT, et al. (2010) Modeling membrane shaping by proteins: Focus on EHD2 and N-BAR domains. Febs Lett 584: 1830–1839. doi: 10.1016/j.febslet.2009.10.023 |
[20] | Campelo F, Kozlov MM (2014) Sensing membrane stresses by protein insertions. Plos Comput Biol 10: e1003556. doi: 10.1371/journal.pcbi.1003556 |
[21] | Walani N, Torres J, Agrawal A (2014) Anisotropic spontaneous curvatures in lipid membranes. Phys Rev E 89: 062715. |
[22] | Israelachvili JN (2011) Intermolecular and Surface Forces: Revised Third Edition: Elsevier Science. |
[23] | Rawicz W, Olbrich KC, McIntosh T, et al. (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79: 328–339. doi: 10.1016/S0006-3495(00)76295-3 |
[24] | Petrache HI, Tristram-Nagle S, Gawrisch K, et al. (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86: 1574–1586. doi: 10.1016/S0006-3495(04)74225-3 |
[25] | Tristram-Nagle S, Petrache HI, Nagle JF (1998) Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J 75: 917–925. doi: 10.1016/S0006-3495(98)77580-0 |
[26] | Simunovic M, Voth GA (2015) Membrane tension controls the assembly of curvature-generating proteins. Nature Commun 6. |
[27] | Simunovic M, Voth GA, Callan-Jones A, et al. (2015) When physics takes over: BAR proteins and membrane curvature. Trends Cell Biol 25: 780–792. doi: 10.1016/j.tcb.2015.09.005 |
[28] | Dan N (2007) Lipid tail chain asymmetry and the strength of membrane-induced interactions between membrane proteins. BBA- Biomembranes 1768: 2393–2399. doi: 10.1016/j.bbamem.2007.05.003 |
[29] | Dan N (2007) Effect of lipid architecture on the properties of self-assembled membranes, and the implications to protein-protein interactions. Biophys J: 548A–548A. |
[30] | Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28: 693–703. |
[31] | Kozlov MM, Leikin S, Rand RP (1994) Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase-transition in dioleoylphosphatidylethanolamine Biophys J 67: 1603–1611. |
[32] | Leikin S, Kozlov MM, Fuller NL, et al. (1996) Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys J 71: 2623–2632. doi: 10.1016/S0006-3495(96)79454-7 |
[33] | Lipowsky R, Sackmann E (1995) Structure and dynamics of membranes: I. from cells to vesicles / II. generic and specific interactions: Elsevier Science. |
[34] | ArandaEspinoza H, Berman A, Dan N, et al. (1996) Interaction between inclusions embedded in membranes. Biophys J 71: 648–656. doi: 10.1016/S0006-3495(96)79265-2 |
[35] | Masuda M, Mochizuki N (2010) Structural characteristics of BAR domain superfamily to sculpt the membrane, Elsevier, 391–398. |
[36] | White SH, King GI (1985) Molecular packing and area compressibility of lipid bilayers. PNAS 82: 6532–6536. doi: 10.1073/pnas.82.19.6532 |
[37] | Brannigan G, Brown FLH (2006) A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers. Biophys J 90: 1501–1520. doi: 10.1529/biophysj.105.075838 |
[38] | Zhou Y, Raphael RM (2007) Solution pH alters mechanical and electrical properties of phosphatidylcholine membranes: relation between interfacial electrostatics, intramembrane potential, and bending elasticity. Biophys J 92: 2451–2462. doi: 10.1529/biophysj.106.096362 |
[39] | Sapia P, Coppola L, Ranieri G, et al. (1994) Effects of high electrolyte concentration on DPPC-multilayers-An ESR and DSC investigation. Colloid Poly Sci 272: 1289–1294. doi: 10.1007/BF00657783 |
[40] | Risselada HJ, Marrink SJ (2009) Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys Chem Chem Phys 11: 2056–2067. doi: 10.1039/b818782g |
[41] | Nagle JF, Jablin MS, Tristram-Nagle S, et al. (2015) What are the true values of the bending modulus of simple lipid bilayers? Chem Phys Lipids 185: 3–10. doi: 10.1016/j.chemphyslip.2014.04.003 |
[42] | Arkhipov A, Yin Y, Schulten K (2009) Membrane-bending mechanism of Amphiphysin N-BAR domains. Biophys J 97: 2727–2735. doi: 10.1016/j.bpj.2009.08.051 |
[43] | Bhatia VK, Hatzakis NS, Stamou D (2010) A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 21: 381–390. doi: 10.1016/j.semcdb.2009.12.004 |
[44] | Lyman E, Cui HS, Voth GA (2010) Water under the BAR. Biophys J 99: 1783–1790. doi: 10.1016/j.bpj.2010.06.074 |
[45] | Ashkar R, Nagao M, Butler Paul D, et al. (2015) Tuning membrane thickness fluctuations in model lipid bilayers. Biophys J 109: 106–112. doi: 10.1016/j.bpj.2015.05.033 |