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Abstract: Membrane deformation by asymmetric crescent-shaped proteins such as BAR-domains is 
calculated, using a mean field model that accounts for both bending and area stretch deformations. 
The penalties associated with membrane bending and area perturbation lead to moderately 
long-ranged (order 10 nm), non-monotonic, membrane-induced interactions between proteins that 
may prevent the formation of closely packed aggregates. As a result, BAR-domain proteins may 
favor the formation of an ordered array with a specific separation between domains whose spacing is 
set by the ratio between the bending and area stretch moduli. 

Keywords: BAR domain; Amphiphysin; membrane perturbation; Helfrich model 
 

1. Introduction  

BAR (Bin-Amphiphysin-Rvs167) domain proteins are key players in cellular membrane 
remodeling, participating in processes such as endocytosis, trafficking, division, or migration and 
ubiquitous in species from insects to human [1–6]. BAR-domains are dimerized through a helical 
coiled-coil motif to form elongated, positively-charged crescent structures (see, for example, [7]). 
Electrostatic interactions between the dimer and negatively charged phospholipids such as 
phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) localize the protein at the membrane interface, 
where the protein’s crescent shape causes a corresponding deformation in the bilayer. Additional 
curvature may be induced through the insertion of amphipathic helix “wedges” that disrupt the 
structure of the outer leaflet [3,4,8,9,10]. BAR-domains or proteins induce the formation of highly 
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curved regions such as tubules [11,12], where the formation of ordered linear arrays of the proteins 
on the membrane surface leads to large-scale remodeling [13,14].  

The bending induced by the adhesion of BAR-dimers deforms the preferred flat geometry of the 
membrane, leading to an energetic penalty. Theoretical models of bilayer/BAR-domain assemblies find 
that this bending penalty depends on the properties and orientation of the interacting domains [15,16]; 
Protein aggregation minimizes the area of perturbed membrane and thus is favoured. The models 
predict that the interactions between proteins oriented normal to the surface (and parallel to each 
other) are purely repulsive, so that their aggregation minimizes the area of perturbed membrane, 
while the interactions between proteins parallel to the bilayer surface are purely attractive [15,16]. 
The result in either limit is overall membrane curvature as displayed by tubular geometry [15,16]. It 
is interesting to note that local segregation of lipid species in mixed bilayers, triggered by domain 
adsorption, has only a minor effect on the overall membrane curvature [17–21], suggesting that 
analysis based on the assumption of one-component lipid bilayers is still applicable to mixed 
systems. 

Previous models of bilayer perturbation by BAR-domains account for bending deformation only. 
However, lipid assemblies change their area under pressure or local deformation [22], with an 
effective area stretch modulus that is comparable in magnitude to the bending modulus: For example, 
in phosphatidylcholine (PC) membranes the bending modulus is of order 10–19 J, while the area 
stretch modulus is of order 0.2 N/m (e.g. [23], which-translated to energy units (using a characteristic 
area per lipid of 70Å2 [24,25]) is ~1.5 10–19 J. Indeed, recent simulations have shown, that the 
interactions between BAR-domains strongly depend on membrane tension [26,27]. Previous models 
of protein-induced membrane perturbation show that (even in tensionless bilayers) the perturbation 
of local bilayer structure due to the presence of proteins depends on both the bending and area stretch 
moduli [28,29]. Yet, as noted, to date theoretical models of membrane-mediated interactions 
between BAR-domains consider only membrane curvature, neglecting the potential effect of the 
area changes [15,16,18].  

This paper explores the role of the area stretch modulus on membrane-induced interactions 
between crescent-shaped, asymmetric proteins such as the BAR-domains. The model takes into 
account that the binding between the domain and the bilayer causes two types of deformations: A 
curvature one (since the bilayer “molds” to fit the more rigid protein structure), and a packing one 
that arises from (i) perturbed density of the lipids bound to the domain (e.g. because of electrostatic 
interactions, insertion of amphipathic helices, etc.), and (ii) the coupling between local curvature and 
lipid packing arising from the associated splay. The inclusion of the area stretch modulus has an 
effect that is not only quantitative, but also qualitative, on membrane-induced interactions between 
proteins [28,29]. In particular, accounting for the bending stiffness alone leads to purely attractive 
interactions. However, the protein-induced local area perturbation (and a non-zero area modulus) 
yields a non-monotonic interaction profile between domains that can give rise to ordered arrays with 
a preferred spacing-even in the absence of direct protein-protein interactions [28,29]. The model used 
is a mean field, self-consistent one based on the Helfrich approach [30] that calculates the optimal 
membrane perturbation profile resulting from an induced deformation by free energy minimization. 
To evaluate the role (if any) or area perturbations, the analysis focuses on tensionless membranes: 
First, the self-assembled nature of lipid membranes and their (low, but finite) permeability to water 
means that imposed tension can be relaxed after a period of time, so that an equilibrium analysis such 
a the one discussed here is more appropriate for tensionless systems. Second, imposed tension 
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emphasizes the role of area perturbation when compared to curvature penalties; The analysis of the 
tensionless membrane will provide the lower limit for the effect of the area perturbation, and enable a 
clear comparison to curvature effects.  

2. Materials and Methods 

2.1. Mean field model 

The Helfrich mean-field model is used to calculate the free energy of a membrane as an 
expansion in the local curvatures [30] 

       (1) 

here F is the free energy (in units of kT, where k is the Boltzmann constant and T the temperature). 
The membrane free energy is written in terms of the bilayer moduli: B is the compressibility 

modulus that accounts for the interfacial tension and molecular packing, K the bending rigidity,  

the Gaussian modulus, l0 the thickness of the interfacial layer, and C0 is the spontaneous curvature 
(preferred curvature) of the bilayer, which is typically zero for bilayers. The energy penalty for 
deformation depends on the deformation profile—C1 and C2 are the principle curvatures (all 
curvatures are dimensionless, given by the ratio between the bilayer thickness and the relevant radius 
of curvature). It should be noted that, although eqn (1) is an expansion to 2nd order in curvature, it 
has been shown to apply even to highly curved surfaces [31,32].  

Binding between proteins and the bilayer imposes a perturbation in both the local curvature and 
the packing density (due, for example, to electrostatic screening of lipid-lipid interactions by the 
oppositely charged protein ones). Since the membrane is self-assembled, the lipid packing density 
(defined by the area per lipid, or, inversely, by the surface density) is linked to the local thickness of 
the membrane by an equation of state. The simplest relationship is that of tail volume conservation, 
namely, that the area per lipid times the local thickness is equal to the tail volume. More 
sophisticated ones account for such contributions as water penetration into the membrane core [33]. 
In all cases, however, the local thickness of the membrane can be coupled to the area per lipid so that 
the area perturbation caused by protein incorporation can be accounted for by considering the 

thickness of the membrane, or the dimensionless thickness perturbation ( r -  ) = (l(r -  ) –l0)/l0, where l0 

is the unperturbed thickness of the layer, and r -   the distance from some fixed point. 

Defining the local perturbation through the membrane thickness profile allows coupling it to the 
local curvature: In caretsian coordinates with z axis long the bilayer thickness and (x,y) in the 
membrane plane (see Figure 1), C1 = Ci1 + l0

2∂2/∂x2 and C2 = Ci2 + l0
2∂2/∂y2, where Ci1 and Ci2 are 

the initial curvatures of the bilayer before deformation (for a detailed derivation see Supplemental 
Materials).  
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Figure 1. Membrane perturbation by an adsorbed crescent protein, such as the 
BAR-domain dimer. The blue curve represents a model crescent protein. The y 
coordinate describes the distance in the direction along the backbone of the crescent, 
while the x coordinate denotes the transverse distance: (0.0) defines the center of the 
protein. The z coordinate describes the local perturbation to the membrane’s outer 
surface, and relates to , the thickness perturbation. Note that the z scale is exaggerated 
to emphasize the deformation. The curvature of the protein is exaggerated here for 
illustration purposes. The side sketch shows an enlargement of the membrane/protein 
interface. Figure drawn using Mathematica © 

In the case of crescent proteins such as the BAR domains, their shape induces a local cylindrical 
curvature in the membrane so that C2 = 0. If the membrane has zero spontaneous curvature and is 
initially flat (on a local basis) so that Ci1 = Ci2 = 0, free energy minimization yields the 
Euler-Lagrange equation [34] 

          (2) 

The solution of this equation is of the form 
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where  = (2Kl0
2/B)1/4 and r  is the 2D planar distance from the protein boundary (namely √(x2 + y2) 

in Cartesian coordinates such as shown in Figure 1). An alternate representation of the profile is 
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The decay profile depends on the geometry of the system and the boundary conditions at the 
interface between the protein and the membrane (see Figure 1). The length to width ratio of 
BAR-domains is relatively high (ranging from 7 to 14, depending on the type of domain [35]). As a 
result the membrane perturbation can be decoupled into an “edge” orientation, in the direction 
parallel to the domain axis (y in Figure 1), and a “center” one, extending in the direction 
perpendicular to the domain axis (x in Figure 1).  

The boundary conditions are therefore different for x and y: In the “edge” orientation the 
curvature at the domain boundary is set by that of the dimer, CD, and the thickness perturbation is 
given by some value, 0. In the center orientation there is no imposed curvature and the only 
boundary condition at the protein interface is that of 0. In addition, at the midpoint between adjacent 
proteins the 1st and 3rd derivatives of the are zero. It should be noted that the values of these 
boundary conditions will differ between the top monolayer- which is in direct contact with the 
protein, and the bottom monolayer, which is not (Figure 1). The analysis here focuses on the top 
leaflet whose deformation and energetic penalty are likely to dominate the system and can be directly 
linked to the protein properties. The bottom monolayer’s contribution can be calculated in a similar 
manner, but the applied boundary conditions are not as directly correlated to the protein 
characteristics, and therefore harder to define.  

Once the thickness perturbation profile is determined, it can be substituted into eqn (1) and 
integrated as a function distance from the protein boundary: 

F
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where 2 h is the separation between adjacent proteins, L is the contour length of the protein, and W 
the width. 

3. Results 

The length to width ratio of BAR-domains is relatively so that the membrane perturbation can 
be decoupled into two orientations: “Edge” in the direction parallel to the domain axis (y in Figure 1), 
and “center” in the direction perpendicular to the domain axis (x in Figure 1). In both directions, the 
adsorbed domain causes a local perturbation in the lipid packing density at the domain/bilayer 
contact that is defined by a value 0 determined by the domain-membrane interactions. However, in 
the end orientation the domain also imposes a local curvature that is set by the structure of the 
specific protein. Substituting these boundary conditions into eqn 3 yields for an isolated protein 
where h, the distance between adjacent proteins, is taken to be infinite: 
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 = (2Kl0
2/B)1/4 is the characteristic membrane perturbation length. High values of  indicate a large 

resistance to bending, which leads to a perturbation profile that is relatively low in curvature but 
extends further from the protein boundary, thereby incurring a higher area perturbation penalty. A 
small value of  corresponds to a significant resistance to area perturbation, so that the profile decays 
rapidly with distance from the protein boundary, at a cost of locally high curvatures.  

Figure 2 shows the optimal membrane perturbation profile imposed by a BAR domain as a 
function of the dimensionless distance from the center (2.A) and the edge (2.B). The values chosen 
for 0 and the protein curvature, CD are representative of BAR-domain proteins: 0 depends on 
parameters such as the charge density of the membrane and the protein and the solution ionic 
strength, as well as the additional effect of the wedge helices inserted in the bilayer, so that 0 = 0.1 
is a reasonable estimate [36,37]. Note that the center profile scales linearly with 0 (eqn 5.a) so that it 
defines the scale of the perturbation. CD, the domain curvature, is given by l0/RD, where RD is the 
radius of curvature of the BAR-domain dimer, and can range from ~0.07 to ~0.3 for the F and 
N-BARs, or order –0.05 for I-BAR proteins [35]. A more detailed explanation of the values chosen 
here is in the “Discussion” section.  

 

Figure 2. Dimensionless bilayer thickness perturbation as a function of the 
dimensionless distance from a single (isolated) crescent protein (based on eqn 5). (A) 
Center perturbation, (B) end perturbation. The protein- imposed thickness deformation is 
taken to be relatively weak: 0 = 0.1, i.e. 10% of the membrane thickness. The protein 
dimensionless curvature, namely, bilayer (equilibrium) thickness divided by the protein 
radius of curvature, is equal to 0.1 (solid line) and 0.5 (dashed line).  
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The free energy penalty due to membrane perturbation by a single (isolated) BAR domain can 
be calculated, self-consistently, from the perturbation profile by integrating over the optimal profile 
 (eqn 4, when h- > ∞). As in the profile calculation, the penalties due to the edge and the center 
deformations are decoupled, so that the total energy penalty per isolated BAR-domain (in units of kT) 
is given by 
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Figure 3. Interactions between crescent-shaped proteins depend on their relative 
orientation. The blue curves represents the location of the model crescent proteins. (A) 
center to center, and (B) end to end. hL defines the spacing between the protein edges in 
the center-to-center, and hW between their ends in the end-to-end. Figure drawn using 
Mathematica © 

When two domains approach each other, their membrane-induced perturbation profiles overlap, 
modifying the perturbation profiles and the associated energetic penalty. As in the single-domain 
case, the overlapping profile depends on the relative orientation: end-to-end or center-to-center, as 
sketched in Figure 3 (it should be noted that other approach angles are clearly possible, but it has 
been shown that these two orientations dominate [26]). The resulting perturbation profiles, for 
several end-to-end separation values, are plotted in Figure 4. At large spacings, the perturbation 
profiles do not interact. As the distance decreases, the deformation profiles start to overlap, leading to 
a change in the optimal membrane thickness profile. 

The energetic end-to end penalty due to the adsorption of a single protein in a dense array is 
plotted in Figure 5 as a function of the distance between proteins. As suggested by the perturbation 
profiles (Figure 3), proteins start to interact when the distance between them is of order 8 (recall 
that h is half the separation between adjacent proteins). The inset shows a magnification of the 
shallow attractive minimum at a distance of order h = 3. At closer distances, the large deformation 
due to the overlapping perturbation profiles causes a significant energy barrier. At contact (h = 0) 
there is no energetic penalty since there is no membrane between the proteins. 
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Figure 4. The membrane perturbation profile as a function of distance from two 
interacting crescent proteins in end-to-end orientation. The dimensionless curvature 
is 0.1, and the thickness perturbation is 0 = 0.1. The overall separation between the 
protein ends is given by 2hL. 

 

Figure 5. The membrane free energy penalty for an end-to end- perturbation due to 
a single adsorbed BAR-domain, as a function of the dimensionless distance between 
adjacent domains, h. F(h)/F∞ is the free energy relative to the isolated domain case. The 
dimensionless curvature is 0.1, and the thickness perturbation is 0 = 0.1. 

4. Discussion 

Lipid membranes are self-assembled structures whose surface area is set by the preferred 
packing density of the constituent lipids. The preferred packing density is sensitive to such 
parameters as the solution ionic strength or pH (see, for example, [38,39]), or can be modified by 
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imposing membrane curvature [40]. The adsorption of proteins on the membrane surface can perturb 
the lipid packing on a local scale (e.g. by screening electrostatic interactions), giving rise to a 
perturbation profile and an associated energy penalty. The membrane response to this perturbation is 
defined by a characteristic length scale (eqn 3),  = (2Kl0

2/B)1/4, where K is the bending modulus, B 
the area stretch modulus, and l0 the bilayer thickness.  

, the membrane perturbation length, is independent of the type or magnitude of the imposed 
local perturbation, a function of the bilayer properties only. In systems where the bending modulus is 
large relatively to the area modulus,  is large and perturbations decay slowly, with a bilayer 
thickness profile that minimizes local curvature. In systems where B >> Kl0

2 the perturbation profile 
decays rapidly so as to minimize the area of perturbed lipid packing, at a cost of high curvature. 
(Assuming that the membrane area is fixed corresponds to a value of B = 0, where there is no 
“natural” membrane deformation length-scale. In such cases, the area affected by the perturbation is 
set by the inclusion/protein size—see, for example, [15,16]).  

The adsorption of crescent-shaped inclusions, such as BAR-domain proteins, on a lipid 
membrane causes both a bending and a packing deformation at the membrane/protein boundary. Due 
to their highly aniosotropic shape (length >> width), the perturbation profiles imposed by 
BAR-domain proteins can be decoupled into two orientations (Figure 1): Perpendicular to the protein 
length, where the perturbation is dominated by packing, or thickness deformation, and parallel to the 
protein length, where the perturbation combines both packing deformation and an imposed curvature. 

The magnitude of the imposed thickness perturbation (which is proportional to the lipid packing 
perturbation), 0, depends on parameters such as the charge density of the protein, the charge density 
of the lipid bilayer, and the solution ionic strength. In the case of BAR-domains, additional packing 
perturbation may be caused by the protein’s helical “wedges”[3,4,8,9,10]. Therefore, the value of 0 
can vary widely between different BAR-domain/bilayer systems and as a function of solution 
conditions.  

Unlike other types of proteins (e.g. transmembrane proteins), BAR-domains also impose a 
curvature on the membrane. The nominal curvature of BAR-domain proteins can be estimated 
through the ratio between the membrane thickness and RD, the radius of curvature of the 
BAR-domain dimer, i.e. CD = l0/RD. This value ranges from ~0.07 for F-BAR to ~0.2 for N-BARs 
(the curvature of I-BARs is inverse, with CD ≈ –0.05) [35], although it can vary greatly depending 
not only on the protein curvature but also on the membrane thickness. For example, Amphiphysin 
has a radius that is approximately 11 nm, so that the imposed CD on phosphatidylcholine (PC) 
membranes whose thickness l0is can vary from ~3.5 nm to 4.4 nm [23,41]) can vary from 2.5–3.2. 
Furthermore, the insertion of “wedges” by the protein into the bilayer may also increase the imposed 
curvature beyond that of the protein dimer itself, depending on the number and nature of the 
amphipathic helix units and the properties of the bilayer.  

Calculating the membrane perturbation profile that minimized the energetic penalty due to the 
inclusion of an isolated BAR-domain protein (eqn 5) yields an oscillating exponential decay whose 
characteristic lengthscale is  and whose magnitude scales with the imposed perturbation values, 0 
and CD. Figure 2 shows the membrane perturbation profile in the two principle directions for a 
thickness (or packing density) perturbation at the protein boundary of 0.1, or 10%, with two values 
of the imposed curvature: CD = 0.1, a value that is similar to that of the F-BARs or some N-BARs, 
and a high value of CD = 0.5 to examine the effect of a potential upper limit. Note that intermediate 
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values of CD will follow a perturbation profile that falls between these two values, while ones for CD 
values lower than 0.1 will fall between this one and the CD = 0 profile shown in Figure 2A.  

As may be expected, the magnitude of the edge (parallel) perturbation that accounts for both 
packing and curvature deformations, is larger than that of the center perpendicular one. It is 
interesting to note that, despite the fact that the characteristic lengthscale is the same (= ), the 
maxima and minima of the larger imposed curvature are located more closely to the protein boundary 
(see Figure 2B) that those of the weaker perturbation. Thus, more highly curved domains such as 
N-BARs may induce more pronounced perturbation than the weakly curved F-BARs, but the range 
of the imposed perturbation may extend to shorter distances from the protein boundary.  

The oscillating perturbation profile differs from the one expected when considering only 
bending penalties, where the deformation is found to decay as a simple exponential from the protein 
boundary [15,16]. It is in agreement with the simulations of Simunovic, et al [13,14] who find clearly 
decaying oscillations in the Gaussian curvature of the bilayer and the lateral pressure per lipid (which 
is related to the packing density and, therefore the thickness) as a function of distance from the 
boundary of the BAR domain. 

The perturbation penalty due to an isolated protein, F∞ (eqn 6) describes the resistance of the 
bilayer to the adsorption of a single, isolated protein. Unlike the electrostatic interactions that drive 
the adsorption, which are highly sensitive to solution conditions such as ionic strength, the 
perturbation penalty is dominated by the membrane moduli and the magnitude of the induced 
curvature perturbation: As the moduli (K,B) increase, so does the energetic penalty. Due to the 
coupling between local bilayer thickness (or density) and curvature, the modification of one leads to 
a perturbation in the other (see, for example, [28,29]). As a result, even if there is no protein-imposed 
curvature (i.e. CD = 0) the perturbation energy still depends on K, the bending modulus, and if there 
is no area perturbation (0 = 0) the penalty still depends on the B, the area modulus. Thus, neglecting 
the contribution of area deformation (i.e. taking B = 0) may significantly underestimate the penalty 
associated with the domain-induced perturbation even if the perturbation is dominated by curvature, 
rather than area changes. 

The value of the isolated protein energy penalty, F∞ depends on the BAR-domain characteristics: 
CD, 0 and the length of the domain, as well as the bilayer moduli B and K. Rawicz, et al [23] find 
that for saturated lipids, membrane moduli for phosphatidylcholine (PC) membranes are in the range 
of K = 10–19 J, B = 0.2 N/m and l0 = 3.5 nm (these values vary with the tail length, and are consistent 
with other systems as well, e.g. [41]). As a concrete example, for Amphiphysin whose radius of 
curvature is approximately 11 nm, CD is of order 0.3. The length of the protein is of order 20 nm [7]. 
As a result, F∞ is of order 1 (i.e. the energy is equal to kT) for 0  = 0, i.e. when there is no thickness 
perturbation associated with the protein adsorption, and increases to order 10 when 0  = 0.1. For 
adsorption to take place, the protein adsorption energy must be high enough to compensate for this 
penalty, namely, in the range of 1–10 kT. If the energy released by the formation of an electrostatic 
bond (due to counterion release) is taken to be of order 1 kT, the adsorption energy of proteins like 
Amphiphysin should be of order 7–10 kT (see, for example, [42,43]). However, screening by water 
molecules at the bilayer surface has been shown to reduce the adsorption energy so that, for N-BAR 
domains, it may be on the order of ~3 kT [44]. These values are within the same order of magnitude 
as the membrane perturbation penalty, suggesting that the magnitude of thickness deformation that 
can be supported by the bilayer (i.e., if the deformation exceeds this value the protein will not adsorb) 
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must be low, unless other binding mechanisms (such as the insertion of the amphipathic helix wedges) 
bind the protein more firmly to the membrane and compensate for the higher deformation penalty [44].  

Membranes can display spontaneous, thermally induced fluctuations whose magnitude depends 
on the type of constituent lipids and temperature: For example, the amplitude of thickness 
fluctuations in pure dimyristoylphosphatidylcholine (DMPC) or distearoylphosphatidylcholine 
(DSPC) is of order 0.4 nm over a broad range of temperatures, but that of mixed DMPC/DSPC 
systems range from ~0.35 nm at 35 °C to 1.2 nm at 65 °C [45]. The energetic penalty associated with 
such fluctuations is of order kT, and is therefore comparable in magnitude to the perturbation penalty 
associated with proteins with low imposed thickness (0) and curvature (CD) values; The 
perturbation associated with BAR-domain proteins, and the resulting energetic penalty, may be an 
order of magnitude higher. However, it cannot exceed the ~5–10 kT range, when the membrane 
energetic penalty becomes higher than the adsorption energy gain.  

Increasing the concentration of BAR-domain proteins in the membrane decreases the spacing 
between them. This leads to an overlap in the perturbation profiles of adjacent domains (see Figure 4) 
that modifies the profiles, and as a result the energetic penalty (Figure 5). When the spacing between 
proteins is relatively large (hL = 8), the membrane recovers its equilibrium thickness in the center 
between the proteins and the associated energetic penalty is the same as that of the isolated domain. 
However, as the proteins approach each other the perturbation profile overlap; When the spacing is 
relatively close (hL ≤ 6), the membrane does not regain its preferred thickness. The deformation 
profiles induced by adjacent proteins in the center-to-center profiles show similar trends.  

The effect of the separation between domains on the end-to-end energetic penalty is 
non-monotonic, as shown in Figure 5: While studies considering only the bending modulus (namely, 
implicitly taking B to be zero) find purely attractive interactions [15,16,18], accounting for the area 
stretch modulus introduces an energy barrier to aggregation at a spacing of order 2, preceded by a 
shallow minimum at ~3. The height of the barrier is roughly FB ≈ 0.4F∞, namely, approximately 5 
kT. Thus, although the overall interaction between BAR-domains is attractive (since the perturbation 
penalty is minimized when h = 0), this barrier may prevent it from occurring. The probability of 
random protein motion overcoming the barrier so that aggregation takes place is proportional to 
exp(-FB), namely, decreasing exponentially as the values of K and/or B increase. It should be noted 
that while Figure 5 focuses on the end-to-end arrays, the center-to-center interactions follow the 
same trend. The main difference between the two orientations is in the scale of the energetic penalty, 
since the end-to-end orientation accounts for both the area and bending deformations induced by the 
BAER-domain, while the center-to-center is due to only the area packing perturbation.  

These results are in qualitative agreement with the molecular-scale coarse-grained simulations 
of Simunovic and Voth [26,27], who find that BAR-domains interact (when the membrane is 
tensionless) over distances of order 12 nm, an order of magnitude larger than the range expected for 
electrostatic interactions. This range is similar to the one predicted by the model presented here of ~ 
3, which translates to a range of 6–10 nm for typical PC bilayers [23], and may be higher for stiffer 
ones. In addition, the simulations find that in the tensionless membrane, the energy gain due to 
protein aggregation is of order 6 kT [26,27]. This is comparable to the value of F∞ in our model 
(which ranges between 1 and 10 kT depending on the magnitude of the thickness perturbation). This 
energy barrier may prevent, in certain cases, the formation of a closely packed cluster by the 
BAR-domains, yielding instead an ordered array with a spacing of order 3, namely, ~10 nm.  
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The distance between proteins, h, is inversely proportional to their concentration on the bilayer 
surface. As a result, the energy profile displayed in Figure 5 can be used to evaluate the phase 
behavior of adsorbed Bar-domains. At low concentrations (h large) the proteins do not interact and 
are expected to be distributed randomly on the surface. As the concentration increases, the proteins 
begin to interact. Due to the energy barrier at higher concentrations (smaller h values), it is likely that 
the proteins may order in an array whose spacing is associated with the shallow energy minimum at 
~3 (see Figure 5 inset). 

5. Conclusion 

A mean-field model is used to calculate the effect of the area stretch modulus on the properties 
of lipid bilayers perturbed by a crescent-shaped BAR domain. The results show that accounting for 
the area modulus gives rise to a non-monotonic perturbation profile, associated with non-monotonic 
membrane induced interactions between BAR domains, whose range is set by a characteristic 
lengthscale that depends on the bilayer moduli. In particular, the presence of a potentially significant 
energy barrier suggests that under certain conditions the BAR-domains may prefer to form an 
ordered array with a spacing of order ~10 nm, rather than a closely clustered domain.  

Acknowledgments 

Thanks to Dr D. Danino for her invaluable insights and help. 

Conflicts of Interest 

The author declares no conflicts of interest in this paper. 

References 

1. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell 
membrane remodelling. Nature 438: 590–596. 

2. Jao CC, Hegde BG, Gallop JL, et al. (2010) Roles of Amphipathic Helices and the 
Bin/Amphiphysin/Rvs (BAR) Domain of Endophilin in Membrane Curvature Generation. J Biol 
Chem 285: 20164–20170. 

3. Mim C, Cui H, Gawronski-Salerno JA, et al. (2012) Structural basis of membrane bending by the 
N-BAR protein endophilin. Cell 149: 137–145. 

4. Mim C, Unger VM (2012) Membrane curvature and its generation by BAR proteins. Trends 
Biochem Sci 37: 526–533. 

5. Suarez A, Ueno T, Huebner R, et al. (2014) Bin/Amphiphysin/Rvs (BAR) family members bend 
membranes in cells. Sci Rep 4: 4693. 

6. Liu S, Xiong X, Zhao X, et al. (2015) F-BAR family proteins, emerging regulators for cell 
membrane dynamic changes-from structure to human diseases. J Hem & Onc 8: 47. 

7. Peter BJ, Kent HM, Mills IG, et al. (2004) BAR domains as sensors of membrane curvature: The 
amphiphysin BAR structure. Science 303: 495–499. 

8. Blood PD, Voth GA (2006) Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced 



119 

AIMS Biophysics  Volume 4, Issue 1, 107-120. 

membrane curvature by means of molecular dynamics simulations. PNAS 103: 15068–15072. 
9. Blood PD, Swenson RD, Voth GA (2008) Factors influencing local membrane curvature 

induction by N-BAR domains as revealed by molecular dynamics simulations. Biophys J 95: 
1866–1876. 

10. Cui H, Ayton GS, Voth GA (2009) Membrane Binding by the Endophilin N-BAR Domain. 
Biophys J 97: 2746–2753. 

11. Takei K, Slepnev VI, Haucke V, et al. (1999) Functional partnership between amphiphysin and 
dynamin in clathrin-mediated endocytosis. Nature Cell Biol 1: 33–39. 

12. Frost A, Perera R, Roux A, et al. (2008) Structural basis of membrane invagination by F-BAR 
domains. Cell 132: 807–817. 

13. Simunovic M, Mim C, Marlovits TC, et al. (2013) Protein-mediated transformation of lipid 
vesicles into tubular networks. Biophys J 105: 711–719. 

14. Simunovic M, Srivastava A, Voth GA (2013) Linear aggregation of proteins on the membrane as 
a prelude to membrane remodeling. PNAS 110: 20396–20401. 

15. Schweitzer Y, Kozlov MM (2015) Membrane-Mediated Interaction between Strongly Anisotropic 
Protein Scaffolds. Plos Comput Biol 11: e1004054. 

16. Schweitzer Y, Shemesh T, Kozlov MM (2015) A model for shaping membrane sheets by protein 
scaffolds. Biophys J 109: 564–573. 

17. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nature 
Rev Molec Cell Biol 7: 9–19. 

18. Khelashvili G, Harries D, Weinstein H (2009) Modeling membrane deformations and lipid 
demixing upon protein-membrane interaction: The BAR dimer adsorption. Biophys J 97: 
1626–1635. 

19. Campelo F, Fabrikant G, McMahon HT, et al. (2010) Modeling membrane shaping by proteins: 
Focus on EHD2 and N-BAR domains. Febs Lett 584: 1830–1839. 

20. Campelo F, Kozlov MM (2014) Sensing membrane stresses by protein insertions. Plos Comput 
Biol 10: e1003556. 

21. Walani N, Torres J, Agrawal A (2014) Anisotropic spontaneous curvatures in lipid membranes. 
Phys Rev E 89: 062715. 

22. Israelachvili JN (2011) Intermolecular and Surface Forces: Revised Third Edition: Elsevier 
Science. 

23. Rawicz W, Olbrich KC, McIntosh T, et al. (2000) Effect of chain length and unsaturation on 
elasticity of lipid bilayers. Biophys J 79: 328–339. 

24. Petrache HI, Tristram-Nagle S, Gawrisch K, et al. (2004) Structure and fluctuations of charged 
phosphatidylserine bilayers in the absence of salt. Biophys J 86: 1574–1586. 

25. Tristram-Nagle S, Petrache HI, Nagle JF (1998) Structure and interactions of fully hydrated 
dioleoylphosphatidylcholine bilayers. Biophys J 75: 917–925. 

26. Simunovic M, Voth GA (2015) Membrane tension controls the assembly of curvature-generating 
proteins. Nature Commun 6. 

27. Simunovic M, Voth GA, Callan-Jones A, et al. (2015) When physics takes over: BAR proteins 
and membrane curvature. Trends Cell Biol 25: 780–792. 

28. Dan N (2007) Lipid tail chain asymmetry and the strength of membrane-induced interactions 
between membrane proteins. BBA- Biomembranes 1768: 2393–2399. 

29. Dan N (2007) Effect of lipid architecture on the properties of self-assembled membranes, and the 



120 

AIMS Biophysics  Volume 4, Issue 1, 107-120. 

implications to protein-protein interactions. Biophys J: 548A–548A. 
30. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z 

Naturforsch C 28: 693–703. 
31. Kozlov MM, Leikin S, Rand RP (1994) Bending, hydration and interstitial energies 

quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase-transition in 
dioleoylphosphatidylethanolamine Biophys J 67: 1603–1611. 

32. Leikin S, Kozlov MM, Fuller NL, et al. (1996) Measured effects of diacylglycerol on structural 
and elastic properties of phospholipid membranes. Biophys J 71: 2623–2632. 

33. Lipowsky R, Sackmann E (1995) Structure and dynamics of membranes: I. from cells to vesicles 
/ II. generic and specific interactions: Elsevier Science. 

34. ArandaEspinoza H, Berman A, Dan N, et al. (1996) Interaction between inclusions embedded in 
membranes. Biophys J 71: 648–656. 

35. Masuda M, Mochizuki N (2010) Structural characteristics of BAR domain superfamily to sculpt 
the membrane, Elsevier, 391–398. 

36. White SH, King GI (1985) Molecular packing and area compressibility of lipid bilayers. PNAS 
82: 6532–6536. 

37. Brannigan G, Brown FLH (2006) A consistent model for thermal fluctuations and 
protein-induced deformations in lipid bilayers. Biophys J 90: 1501–1520. 

38. Zhou Y, Raphael RM (2007) Solution pH alters mechanical and electrical properties of 
phosphatidylcholine membranes: relation between interfacial electrostatics, intramembrane 
potential, and bending elasticity. Biophys J 92: 2451–2462. 

39. Sapia P, Coppola L, Ranieri G, et al. (1994) Effects of high electrolyte concentration on 
DPPC-multilayers-An ESR and DSC investigation. Colloid Poly Sci 272: 1289–1294. 

40. Risselada HJ, Marrink SJ (2009) Curvature effects on lipid packing and dynamics in liposomes 
revealed by coarse grained molecular dynamics simulations. Phys Chem Chem Phys 11: 
2056–2067. 

41. Nagle JF, Jablin MS, Tristram-Nagle S, et al. (2015) What are the true values of the bending 
modulus of simple lipid bilayers? Chem Phys Lipids 185: 3–10. 

42. Arkhipov A, Yin Y, Schulten K (2009) Membrane-bending mechanism of Amphiphysin N-BAR 
domains. Biophys J 97: 2727–2735. 

43. Bhatia VK, Hatzakis NS, Stamou D (2010) A unifying mechanism accounts for sensing of 
membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. 
Semin Cell Dev Biol 21: 381–390. 

44. Lyman E, Cui HS, Voth GA (2010) Water under the BAR. Biophys J 99: 1783–1790. 
45. Ashkar R, Nagao M, Butler Paul D, et al. (2015) Tuning membrane thickness fluctuations in 

model lipid bilayers. Biophys J 109: 106–112. 
 

© 2017 Nily Dan, licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


