Citation: Yue Shi, Chi Tim Ng, Ka-Fai Cedric Yiu. Portfolio selection based on asymmetric Laplace distribution, coherent risk measure, and expectation-maximization estimation[J]. Quantitative Finance and Economics, 2018, 2(4): 776-797. doi: 10.3934/QFE.2018.4.776
[1] | Arslan O (2010) An alternative multivariate skew Laplace distribution: properties and estimation. Stat Pap 51: 865–887. doi: 10.1007/s00362-008-0183-7 |
[2] | Artzner P, Delbaen F, Eber JM, et al. (1999) Coherent measures of risk. Math financ 9: 203–228. doi: 10.1111/1467-9965.00068 |
[3] | Ayebo A, Kozubowski TJ (2003) An asymmetric generalization of Gaussian and Laplace laws. J Probab Stat Science 1: 187–210. |
[4] | Barndorff-Nielsen OE (1995) Normal inverse Gaussian distributions and the modeling of stock returns. 24: 1–13. |
[5] | Bingham NH, Kiesel R (2001) Modelling asset returns with hyperbolic distributions. In Return Distributions in Finance, 1–20. |
[6] | Behr A, Ptter U (2009) Alternatives to the normal model of stock returns: Gaussian mixture, generalised logF and generalised hyperbolic models. Ann Financ 5: 49–68. doi: 10.1007/s10436-007-0089-8 |
[7] | Dias JG, Vermunt JK, Ramos S (2015) Clustering financial time series: New insights from an extended hidden Markov model. European J Oper Res 243: 852–864. doi: 10.1016/j.ejor.2014.12.041 |
[8] | Eberlein E (2001) Application of generalized hyperbolic Lvy motions to finance. In Lvy processes, Birkhuser, Boston, MA, 319–336. |
[9] | Eberlein E, Keller U (1995) Hyperbolic distributions in finance. Bernoulli 1: 281–299. doi: 10.2307/3318481 |
[10] | Hellmich M, Kassberger S (2011) Effcient and robust portfolio optimization in the multivariate generalized hyperbolic framework. Quant Financ 11: 1503–1516. doi: 10.1080/14697680903280483 |
[11] | HuW, Kercheval A (2007) Risk management with generalized hyperbolic distributions. In Proceedings of the Fourth IASTED International Conference on Financial Engineering and Applications, ACTA Press, 19–24. |
[12] | Hu W, Kercheval AN (2010) Portfolio optimization for student t and skewed t returns. Quant Financ 10: 91–105. doi: 10.1080/14697680902814225 |
[13] | Hrlimann W (2013) A moment method for the multivariate asymmetric Laplace distribution. Stat Probabil Lett 83: 1247–1253. doi: 10.1016/j.spl.2013.01.026 |
[14] | Iorio C, Frasso G, DAmbrosio A, et al. (2018) A P-spline based clustering approach for portfolio selection. Expert Syst Appl 95: 88–103. doi: 10.1016/j.eswa.2017.11.031 |
[15] | Kollo T, Srivastava MS (2005) Estimation and testing of parameters in multivariate Laplace distribution. Commun Stat-Theor M 33: 2363–2387. doi: 10.1081/STA-200031408 |
[16] | Kotz S, Kozubowski TJ, Podgrski K (2001) Asymmetric multivariate Laplace distribution. In The Laplace Distribution and Generalizations, Birkhuser, Boston, MA, 239–272. |
[17] | Kotz S, Kozubowski TJ, Podgrski K (2002) Maximum likelihood estimation of asymmetric Laplace parameters. Ann I Stat Math 54: 816–826. doi: 10.1023/A:1022467519537 |
[18] | Kotz S, Kozubowski T, Podgorski K (2012) The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Springer Science & Business Media. |
[19] | Kozubowski TJ, Podgrski K (1999) A class of asymmetric distributions. Actuarial Research Clearing House 1: 113–134. |
[20] | Kozubowski TJ, Podgrski K (2001) Asymmetric Laplace laws and modeling financial data. Math Comput Model 34: 1003–1021. doi: 10.1016/S0895-7177(01)00114-5 |
[21] | Lai TL, Xing H (2008) Statistical models and methods for financial markets. New York: Springer. |
[22] | Mandelbrot BB (1997) The variation of certain speculative prices. In Fractals and scaling in finance, Springer, New York, NY, 371–418. |
[23] | Markowitz H (1952) Portfolio selection. The journal of finance 7: 77–91. |
[24] | Punathumparambath B (2012) The multivariate asymmetric slash Laplace distribution and its applications. Statistica 72: 235. |
[25] | Seneta E (2004) Fitting the variance-gamma model to financial data. J Appl Probab 41: 177–187. doi: 10.1239/jap/1082552198 |
[26] | Socgnia VK, Wilcox D (2014) A comparison of generalized hyperbolic distribution models for equity returns. J Appl Math. |
[27] | Stacy EW (1962) A generalization of the gamma distribution. Ann math stat 1187–1192. |
[28] | Surya BA, Kurniawan R (2014) Optimal portfolio selection based on expected shortfall under generalized hyperbolic distribution. Asia-Pacific Financ Mark 21: 193–236. doi: 10.1007/s10690-014-9183-x |
[29] | Visk H (2009) On the parameter estimation of the asymmetric multivariate Laplace distribution. Commun StatTheor M 38: 461–470. |
[30] | Yiu KFC (2004) Optimal portfolios under a value-at-risk constraint. J Economic Dyn Control 28: 1317–1334. doi: 10.1016/S0165-1889(03)00116-7 |
[31] | Zhao S, Lu Q, Han L, et al. (2015) A mean-CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution. Ann Oper Res 226: 727–739. doi: 10.1007/s10479-014-1654-y |
[32] | Zhu Y (2007) Application of Asymmetric Laplace Laws in Financial Risk Measures and Time Series Analysis. Doctoral dissertation, University of Florida. |