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Abstract: In this paper, portfolio selection problem is studied under Asymmetric Laplace Distribution
(ALD) framework. Asymmetric Laplace distribution is able to capture tail-heaviness, skewness, and
leptokurtosis observed in empirical financial data that cannot be explained by traditional Gaussian
distribution. Under Asymmetric Laplace distribution framework, portfolio selection methods based
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method is illustrated via extensive simulation studies. Two real data examples are complemented to
confirm that the Asymmetric Laplace distribution based portfolio selection models are efficient.
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1. Introduction

Portfolio selection aims at either maximizing the return or minimizing the risk. In 1952, Markowitz
(1952) suggests to select the portfolio by minimizing the standard deviation at a given expected return
under the assumption that asset returns are normally distributed. This means that standard deviation is
chosen as the risk measure. Markowitz’s work laid down the cornerstone for modern portfolio selection
theory framework.

Risk measures and probability distributions are two important constituents of the portfolio
selection theory. Traditional Markowitz’s model (Markowitz, 1952) is established based on normality
assumption and standard deviation is chosen as the risk measure.
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One disadvantage of taking standard deviation (StD) as a risk measure is that the loss in the extreme
cases tends to be underestimated. To overcome such a difficulty, the idea of Value at Risk (VaR) is
also widely used in practice. Artzner et al. (1999) suggests that desirable risk measure should be
“coherent”. However, VaR does not fulfill the subadditivity condition as required by the definition of
“coherence”. Yiu (2004) proposed an optimal portfolio selection under Value-at-Risk. On the other
hand, Expected Shortfall (ES) is coherent as a popular risk measure for portfolio selection that aims at
averaging the tail uncertainties.

It is well-known that financial data cannot be described satisfactorily by normal distribution. The
normality assumption is restrictive and is generally violated due to financial market uncertainties and
managers’ risk aversion. As Behr and Ptter (2009) pointed out, alternatives for multivariate normal
distribution are necessary for portfolio selection. A desirable alternative model should be able to
explain tail heaviness, skewness, and excess kurtosis. Various heavy tailed distributions have been
applied to portfolio selection problems. Among these, Mandelbrot (1997) concluded that the daily
rate of return of stock price data exhibit heavy tailed distributions; Hu and Kercheval (2010) apply
multivariate skewed t and student t distribution for efficient frontier analysis; Generalized hyperbolic
distribution is extensively studied in (Behr and Ptter, 2009; Eberlein, 2001; Hellmich and Kassberger,
2011; Hu and Kercheval, 2007; Surya and Kurniawan, 2014; Socgnia and Wilcox, 2014), with special
cases including hyperbolic distribution (Bingham and Kiesel, 2001; Eberlein and Keller, 1995),
Variance Gamma distribution (Seneta, 2004), Normal Inverse Gaussian distribution (Barndor-Nielsen,
1995), etc.

Recently, Asymmetric Laplace distribution has received various attention in the literature, to name
a few, (Ayebo and Kozubowski, 2003; Kollo and Srivastava, 2005; Kozubowski and Podgrski, 1999;
Kozubowski and Podgrski, 2001; Punathumparambath, 2012). Compared to Normal distribution, the
Asymmetric Laplace distribution describes asymmetry, steep peak, and tail heaviness better. Portfolio
selection models are extensively studied under Asymmetric Laplace framework. Zhu (2007),
Kozubowski and Podgrski (2001) apply Asymmetric Laplace distribution to financial data. By
assuming that the asset data is generated from autoregressive moving average (ARMA) time series
models with Asymmetric Laplace noise, Zhu (2007) establish the asymptotic inference theory under
very mild conditions and present methods of computing conditional Value at Risk (CVaR). Zhao et al.
(2015) further propose a so-called mean-CVaR-skewness portfolio selection strategy under
Asymmetric Laplace distribution, this model can be further transformed to quadratic programming
problem with explicit solutions.

In this paper, we extended Hu’s work (Hu, 2010) to Asymmetric Laplace framework. We first
derived the equivalence of mean-VaR/ES/Std-skewness-kurtosis models, and show that these models
can be reduced to quadratic programming problem. Since Zhao et al. (2015) utilized moment
estimation for parameter estimation of Asymmetric Laplace distribution which less efficient compare
to maximum likelihood estimation. Taken into consideration of the normal mean-variance mixture of
Asymmetric Laplace distribution, followed by Expectation-Maximization algorithm for multivariate
Laplace distribution in Arslan (2010), we derived the EM algorithm for Asymmetric Laplace
Distributions that outperforms moment estimation in Zhao et al. (2015). The advantage of the
proposed EM algorithm is to alleviate the complicated calculation of Bessel function. This improves
many existing methods of estimating Asymmetric Laplace distributions, for example, Hrlimann
(2013), Kollo and Srivastava (2005) and Visk (2009). Extensive simulation studies and efficient
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frontier analysis are complemented to confirm that our algorithm performs better than moment
estimation for parameter estimation.

The rest of the article is organized as follows. In Section 2, properties of Asymmetric Laplace
distributions and coherent risk measures are summarized. In Section 3, portfolio selection under
Asymmetric Laplace framework are derived, complement with Expectation-Maximization (EM)
algorithm for parameter estimation of Asymmetric Laplace distributions. In Section 4, simulation
studies are provided to show the efficiency of the Expectation-Maximization procedure. Section 5
presents real data analysis of Asymmetric Laplace Distributions based portfolio selection models,
followed by conclusive remarks in Section 6.

2. Preliminary knowledge

2.1. Asymmetric Laplace distribution

Kotz et al. (2001) proposed the Asymmetric Laplace Distribution with density function

f (x) =
2ex′Σ−1µ

(2π)n/2|Σ|1/2
( x′Σ−1x
2 + µ′Σ−1µ

)v/2Kv
( √

(2 + µ′Σ−1µ)(x′Σ−1x)
)
, (2.1)

denoted as X ∼ ALn(µ,Σ). Here, n is the dimension of random vector X, v = (2− n)/2 and Kv(u) is the
modified Bessel function of the third kind with the following two popular representations:

Kv(u) =
1
2
(u
2
)v

∫ ∞

0
t−v−1 exp

{
− t −

u2

4t

}
dt, u > 0, (2.2)

Kv(u) =
(u/2)vΓ(1/2)
Γ(v + 1/2)

∫ ∞

1
e−ut(t2 − 1)v−1/2dt, u > 0, v ≥ −1/2. (2.3)

When µ = 0n, we can obtain Symmetric Laplace distribution S L (Σ) with density

f (x) = 2(2π)−n/2|Σ|−1/2
(
x′Σ−1x/2

)ν/2
Kν

(√
2x′Σ−1x

)
.

When n = 1, we have Σ = σ11 = σ . In such cases, (2.1) becomes the univariate Laplace distribution
AL1(µ, σ) distribution with parameters µ and σ. The corresponding density function is

f (x) =
1
γ

exp
{
−
|x|
σ2

[
γ − µ · sign(x)

]}
with γ =

√
µ2 + 2σ2. (2.4)

The symmetric case (µ = 0) leads to the univariate Laplace distribution S L1 (0, σ).
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Figure 1. Univariate densities.

Figure 1 displays plot of symmetric densities and AL densities. Symmetric densities including
standard normal distribution, student t distribution with 2 degrees of freedom, and univariate symmetric
Laplace distribution, denoted as N (0, 1), t (2), S L1 (0, 1). The student t distribution possesses heavier
tail than normal distribution, whereas S L1 (0, 1) distribution imposes greater peakedness and heavier
tail than normal case. As for plots of AL densities, when µ > 0, the density skews to the right. On the
other hand, when µ < 0, the density skews to the left.

Important results of univariate and multivariate asymptotic Laplace distributions that will be used
later on are presented below.

Proposition 2.1. (See Kotz, 2001)

(1). If X = (X1, · · · , Xn) follows multivariate Asymmetric Laplace distribution, i.e., X ∼ ALn (µ,Σ), n
is the number of securities. The linear combination w′X = w1X1 + · · · + wnXn follows univariate
Asymmetric Laplace distribution, i.e. w′X ∼ AL1 (µ, σ), with µ = w′µ , σ =

√
w′Σw ,w =

(w1, · · · ,wn)′.
(2). Assume that univariate random variable Y ∼ AL1 (µ, σ). To measure the asymmetry and

peakedness of the distribution, define the skewness (Skew[Y]) and kurtosis (Kurt[Y]) as the third
and fourth standardized moment of a random variable Y . Then,

Skew[Y] =
E(Y − EY)3[
E(Y − EY)2]3/2 =

2µ3 + 3µσ2

(µ2 + σ2)3/2 ,

Kurt[Y] =
E(Y − EY)4[

Var(Y)
]2 =

9µ4 + 6σ4 + 18µ2σ2

(µ2 + σ2)2 .

(3). Let X = (X1, X2, · · · , Xn) ∼ ALn (µ,Σ). Then the first and second order moments of X are

E(X) = µ and Cov (X) = Σ + µ′µ.

(4). The Asymmetric Laplace distribution can be represented as a mixture of normal vector and a
standard exponential variable, i.e., X ∼ ALn (µ,Σ) can be represented as

X = µZ + Z1/2Y,
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where Y ∼ Nn(0,Σ) ,Z ∼ Exp(1). This indicate that we can simulate multivariate Asymmetric
Laplace random vector X ∼ ALn(µ,Σ) as follows:

1. Generate a multivariate normal variable Y ∼ Nn (0,Σ);
2. Generate a standard exponential variable Z ∼ Exp (1);
3. Construct Asymmetric Laplace random vector as X = µZ + Z1/2Y.

Figure 2 displays several realizations of bivariate Asymmetric Laplace distribution with different
levels of asymmetry and peakedness.

Figure 2. Bivariate Asymmetric Laplace data with µ cases: (a1,a2,a3): µ = (0, 0); (b1,b2,b3):
µ = (1, 1); (c1,c2,c3): µ = (−1,−1). Covariance matrix Σ cases. (a1,b1,c1): σ11 = σ22 =

1, σ12 = σ21 = 0; (a2,b2,c2): σ11 = σ22 = 1 , σ12 = σ21 = 0.8; (a3,b3,c3): σ11 = σ22 =

1 , σ12 = σ21 = −0.8.
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2.2. Risk measures

Since mean and covariance matrix cannot be used to characterize non-Gaussian distribution,
alternative risk measures are necessary for portfolio selection problems. Artzner et al. (1999) suggests
that a desirable risk measure should be defined fulfilling certain properties and such a risk measure is
said to be coherent.

A risk measure φ that maps a random variable to a real number is coherent if it satisfies the following
conditions:

1). Translation invariance: φ(l + h) = φ(l) + h, for all random losses l and all h ∈ R;
2). Subadditivity: φ(l + h) ≤ φ(l) + φ(h), for all random losses l, h;
3). Positive homogeneity: φ(λl) = λφ(l) for all random losses l and all λ > 0;
4). Monotonicity: φ(l1) ≤ φ(l2) for all random losses l1 , l2 with l1 ≤ l2 almost surely.

Standard deviation is not coherent in general excepting the Gaussian cases. VaR is coherent when the
underlying distribution is elliptically distributed. Expected Shortfall, or the so-called conditional value
at risk (CVaR) is a coherent risk measure since it always satisfies subadditivity, monotonicity, positive
homogeneity, and convexity. For any fixed α ∈ (0, 1), α-VaR is the α-quantile loss while α-ES is the
average of all β-VaR for β ∈ (α, 1). Both VaR and CVaR measure the potential maximal loss. VaR and
ES can be written as

VaRα = F−1(α) and ESα = E[L|L ≤ -VaRα] = −
1
α

∫ −VaRα

−∞

VaRβdβ,

where F(·) is the cumulative distribution function of loss L and ESα is the expected loss above VaRα.
Thus, the estimation process are∫ −VaRα

−∞

fX(x)dx = α and ESα = −
1
α

∫ −VaRα

−∞

x f (x)dx. (2.5)

Under normality assumption, VaRα and ESα are

VaRα = µ + σΦ−1(1 − α),

ESα = µ + σ
ψ(Φ−1(1 − α))

α
.

where ψ(·) as the normal density distribution, and Φ−1(·) is the quantile distribution. As shown in Hu
et al. (2010), portfolio selected by minimizing standard deviation, VaRα, and ESα are the equivalent
under elliptical distribution assumption.

It is well-documented that asset securities are not normally distributed. As an alternative to Gaussian
distribution, Asymmetric Laplace distribution exhibits tail-heaviness, skewness, and peakedness.

3. Portfolio selection under ALD framework

Let X = (X1, X2, · · · , Xn) ∼ ALn(µP,ΣP) be the return vectors of n securities, and
w = (w1,w2, · · · ,wn)′ is the allocation weight vector. Then, the portfolio is defined as

P (w) = w′X =

n∑
i=1

wiXi.
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According to Proposition 2.1 (2), P (w) ∼ AL1 (µ, σ) with µ = w′µ , σ =
√

w′Σw.
From Theorem 3.1–3.2 below, in order to select a portfolio under Asymmetric Laplace

distribution, it suffices to obtain the unknown parameters µP and ΣP. Thus portfolio selection models
under Asymmetric Laplace distribution lead to parameter estimation for ALn(µP,ΣP). Zhao et al.
(2015) proposed the multi-objective portfolio selection model under Asymmetric Laplace framework
and derived the simplified model that can be reformulated as quadratic programming problem.
However, to estimate the unknown parameters, the authors adopt a moment estimation method that is
less efficient compared to maximum likelihood method. Since Asymmetric Laplace distribution can
be represented as a mixture of exponential distribution and multivariate normal distribution, we
derived the Expectation-Maximization algorithm for parameter estimation of Asymmetric Laplace
distribution. The algorithm for estimating these unknown parameters is discussed in Section 3.2.

3.1. Portfolio selection theorems

Theorem 3.1. Let X = (X1, · · · , Xn) ∼ ALn(µP,ΣP) be a n-dimensional random vector that follow
multivariate Asymmetric Laplace distribution, each element (Xi, i = 1, 2, · · · , n) represent a stock. Let
w be the weight vector and P(w) = w′X =

∑n
i=1 wiXi be the portfolio. Then, under Asymmetric Laplace

framework, risk measures of StD, VaRα, and ESα at α ∈ (0, 1) level formulated as

Standard Deviation: StD
(
P(w)

)
=

σ
√

2
;

Value at Risk: VaRα

(
P(w)

)
= −

σ2

γ + µ
ln
αγ(γ + µ)

σ2 ;

Expected Shortfall: ESα
(
P(w)

)
=

σ2

γ + µ
−

σ2

γ + µ
ln
αγ(γ + µ)

σ2 .

Here, µ = w′µP = mean
(
P(w)

)
, σ =

√
w′ΣPw = std

(
P(w)

)
and γ =

√
µ2 + 2σ2.

Proof. Let µP = (µ1, · · · , µn) be the mean return vector of the securities (X1, · · · , Xn) and ΣP =
(
σP

)p
i, j=1

be the scale matrix of (X1, · · · , Xn). Denote the allocation vector by w = (w1, · · · ,wn)′. Then, the
portfolio P(w) =

∑n
i=1 wiXi follows univariate Asymmetric Laplace distribution with

P(w) =

n∑
i=1

wiXi ∼ AL1(µ, σ) with µ =

n∑
i=1

µiwi , σ =
( n∑

i=1

n∑
j=1

σPi jwiw j

)1/2
.

If µ = 0n, the univariate symmetric Asymmetric Laplace distribution becomes AL1(0, σ) with density

g(x) =
1
γ

exp
{
−
|x|
σ2γ

}
with γ =

√
2σ.

Thus, standard deviation (StD) of portfolio P(w) = w′X is

StD (P(w)) =

∫ +∞

−∞

1
γ
|x| exp

{
−
γ

σ2 |x|
}
dx = 2

∫ +∞

0

x
γ

exp
{
−
γ

σ2 x
}
dx =

2σ4

γ3 =
σ
√

2
.

According to the definition of VaRα and ESα as defined in (2.5) and univariate Asymmetric Laplace
density (2.4), we have

−

∫ −VaRα

−∞

1
γ

exp
{
−
|x|
σ2

[
γ − µ · sgn(x)

]}
dx = α,
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σ2

γ(γ + µ)
exp

{
−
γ + µ

σ2 VaRα

}
= α.

Thus, VaRα and ESα are

VaRα

(
P(w)

)
= −

σ2√
µ2 + 2σ2 + µ

ln
α(µ2 + 2σ2 + µ

√
µ2 + 2σ2)

σ2 = −
σ2

γ + µ
ln
αγ(γ + µ)

σ2 ;

ESα
(
P(w)

)
= −

1
α

∫ −VaRα

−∞

x fX(x)dx = −
1
α

∫ −VaRα

−∞

x
1
γ

exp
{
−
|x|
σ2

[
γ − µ · sgn(x)

]}
dx

=
σ2

µ +
√
µ2 + 2σ2

−
σ2

µ +
√
µ2 + 2σ2

ln
{
2α +

α(µ2 + µ
√
µ2 + 2σ2)

σ2

}
=

σ2

γ + µ
−

σ2

γ + µ
ln
αγ(γ + µ)

σ2 .

�

Then we have the following theorem.

Theorem 3.2. Let X ∼ ALn(µP,ΣP). Then, portfolio P(w) = w′X with following models based on
ES α , VaRα , and S tD (as defined in Theorem 3.1)

min
w

ESα
(
P(w)

)
or min

w
VaRα

(
P(w)

)
or min

w
StD

(
P(w)

)
max

w
Skew[P(w)] =

2µ3 + 3µσ2

(µ2 + σ2)3/2

max
w

Kurt[P(w)] =
9µ4 + 6σ4 + 18µ2σ2

(µ2 + σ2)2

s.t. w′µ = r0 ,w′1 = 1.

are equivalent. Here, µ = w′µP = mean
[
P(w)

]
, σ =

√
w′ΣPw = std

[
P(w)

]
,w = (w1,w2, · · · ,wn)′.

Proof. Let g(µ, σ) = σ2

µ+
√
µ2+2σ2

. Then, ESα[P(w)] and VaRα[P(w)] are

VaRα[P(w)] = −g(µ, σ) ln
(
2α +

αµ

g(µ, σ)
)

= −g(µ, σ)
[
lnα + ln

(
2 +

µ

g(µ, σ)
)]
,

ESα[P(w)] = g(µ, σ) − g(µ, σ) ln
(
2α +

αµ

g(µ, σ)
)

= (1 − lnα)g(µ, σ) − g(µ, σ) ln(2 +
µ

g(µ, σ)
).

Differentiating the above expressions with respect to σ, we have

∂VaRα[P(w)]
∂σ

=
∂g(µ, σ)
∂σ

− lnα − ln
(
2 +

µ

g(µ, σ)
)

+

µ

g(µ,σ)

2 +
µ

g(µ,σ)

 > 0,

∂ESα[P(w)]
∂σ

=
∂g(µ, σ)
∂σ

1 − lnα − ln
(
2 +

µ

g(µ, σ)
)

+

µ

g(µ,σ)

2 +
µ

2+g(µ,σ)

 > 0,
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where

∂g(µ, σ)
∂σ

=

∂
[

σ2

µ+
√
µ2+2σ2

]
∂σ

= 2σ
µ +

µ2+σ2
√
µ2+2σ2

(µ2 +
√
µ2 + 2σ2)2

> 0.

The derivative of skewness measure with respect to σ is

∂Skew[P(w)]
∂σ

=
∂
[

2µ3+3µσ2

(µ2+σ2)3/2

]
∂σ

=
−3µσ3

(µ2 + σ2)5/2 < 0.

The derivative of kurtosis measure with respect to σ is

∂Kurt[P(w)]
∂σ

=

9µ4+6σ4+18µ2σ2

(µ2+σ2)2

∂σ
=
−12µ4σ3 − 12µ2σ5

(µ2 + σ2)4 < 0.

The monotonicity of VaRα[P(w)], ESα[P(w)], Skew[P(w)], and Kurt[P(w)] with respect to σ indicate
that the portfolio selection problems based on these risk measures are equivalent. This means that
minimizing VaRα[P(w)], ESα[P(w)], StD[P(w)] are equivalent to minimizing w′ΣPw. �

3.2. Parameter estimation of Asymmetric Laplace distribution

Assume X = (X1, X2, · · · , Xn) ∼ ALn(µ,Σ). Let x1 , x2 , · · · , xT ∈ R
n be the T observations. We aim

at fitting a multivariate Asymmetric Laplace distributionALn(µ,Σ) with unknown parameters µ,Σ.
Hrlimann (2013), Kollo and Srivastava (2005), Visk (2009) consider moment matching methods that

is less efficient than maximum likelihood estimation. Kotz et al. (2002) and Kotz et al. (2001) presented
the maximum likelihood estimators for parameter estimation of Asymmetric Laplace distributions.
However, maximum likelihood estimation require computation of complicated Bessel function. Thus
we derived the expectation-maximization algorithm for parameter estimation of Asymmetric Laplace
distribution.

3.2.1. Moment estimation

As Zhao et al. (2015) pointed out, according to Proposition 2.1 (3), Asymmetric Laplace distribution
can be estimated via moment method (Moment-AL) with

µ̂ = x̄ and Σ̂ = cov(X) − µ̂′µ̂,

where x̄ = 1
n

∑n
i=1 xi ,Cov(X) =

∑n
i=1(xi − x̄)T (xi − x̄).

3.2.2. Maximum likelihood estimation

Consider sample points x1, x2, · · · , xn and density function of Asymmetric Laplace distribution as
defined in (2.1). Taken logarithm with respect to likelihood function, the log-likelihood is

`(µ,Σ) = ln L(µ,Σ) =

T∑
t=1

ln f (xt;µ,Σ)

=

T∑
t=1

xtΣ
−1µ + T ln 2 −

Tn
2

ln(2π) −
T
2

ln
(
|Σ|

)
+
ν

2

T∑
t=1

ln
(
x′tΣ

−1xt
)
−
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νT
2

ln
(
2 + µ′Σ−1µ

)
+

T∑
t=1

ln Kv

{√
(2 + µ′Σ−1µ)(x′tΣ−1xt)

}
.

Generally, we can directly maximize the log-likelihood function `(µ,Σ) with respect to parameters
µ,Σ and thus obtain the maximum likelihood estimator. Unfortunately, the density function involves
modified Bessel function of the third kind with density (2.2) , (2.3) that are too complex and
complicated for numerical maximization. However, Gaussian-Exponential mixture representation of
the Asymmetric Laplace distribution allows us to employ the expectation-maximization algorithm
without involving modified Bessel functions.

3.2.3. Expectation-maximization algorithm

Then we derive the Expectation-Maximization algorithm for parameter estimation of multivariate
Asymmetric Laplace Distribution (mALD), we follow the EM derivation for Multivariate Skew
Laplace distribution in Arslan (2010).

Let X = (X1, X2, · · · , Xn) be Asymmetric Laplace distributed random vector. Proposition 2.1
suggests that X can be generated from a latent random variable Z = z through multivariate Gaussian
distribution with zµ, zΣ, i.e. X|Z = z ∼ Nn (zµ, zΣ) ,Z ∼ Exp (1) with density

fX|Z(x, z) =
1

(2π)n/2|zΣ|1/2
exp

{
−

1
2

(x − zµ)′(zΣ)−1(x − zµ)
}
,

fZ(z) = e−z1{z≥0}.

Thus the joint density function of X and Z is

fX,Z(x, z) = fX|Z(x, z) fZ(z) =
1

(2π)
n
2 z

n
2 |Σ|

1
2

exp
{
−

1
2z

x′Σ−1x + x′Σ−1µ −
z
2
µ′Σ−1µ − z1{z≥0}

}
.

Suppose that there are T observations X1, . . . , XT generated from the latent random variables
z1, z2, · · · , zT respectively. The complete data is defined as {(xt, zt)} , t = 1, 2, · · · ,T . In the EM
algorithm, xt and zt are the observed and missing data respectively. The log-likelihood up to an
additive constant can be written as

L̃(µ,Σ) =

T∑
t=1

ln fX,Z(xt, zt) = −
T
2

ln |Σ| −
1
2

T∑
t=1

1
zt

x′tΣ
−1xt +

T∑
t=1

x′tΣ
−1µ −

1
2
µ′Σ−1µ

T∑
t=1

zt −

T∑
t=1

zt1{zt≥0}.

Note that the last term of the above equation does not contain any unknown parameters and thus is
negligible. Then, the E-step becomes

E
(
L̃(µ,Σ)|xt, µ̂, Σ̂

)
∝ −

T
2

ln
∣∣∣Σ∣∣∣+ T∑

t=1

x′tΣ
−1µ−

1
2

T∑
t=1

E(z−1
t |xt, µ̂, Σ̂)x′tΣ

−1xt −
1
2
µ′Σ−1µ

T∑
t=1

E(zt|xt, µ̂, Σ̂).

where E(zt|x, µ̂, Σ̂) and E(z−1
t |x, µ̂, Σ̂) are the conditional expectations of zt and z−1

t given xt and the
current estimates µ̂, Σ̂.
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To evaluate conditional expectations E(z−1
t |xt, µ̂, Σ̂) and E(zt|xt, µ̂, Σ̂), we need the conditional

density of Z given X, fZ|X. After some straightforward algebra, the conditional distribution of Z given
X is an inverse Gaussian distribution with density function

fZ|X(z|x,µ,Σ) =
fX,Z(x, z)

fX(x)
=

1

(2π)
n
2 z

n
2 |Σ|

1
2

exp
{
− 1

2z x′Σ−1x + x′Σ−1µ − z
2µ
′Σ−1µ − z1{z≥0}

}
2ex′Σ−1µ

(2π)n/2 |Σ|1/2

( x′Σ−1 x
2+µ′Σ−1µ

)v/2Kv
( √

(2 + µ′Σ−1µ)(x′Σ−1x)
)

=
(2 + µ′Σ−1µ

x′Σ−1x

)v/2
z−n/2 exp

{
− 1

2

[
z−1x′Σ−1x + z(µ′Σ−1µ + z1{z≥0})

]}
2Kv

( √
(2 + µ′Σ−1µ)(x′Σ−1x)

) . (3.1)

Lemma 3.1. (GIG (Stacy, 1962)) A random variable X follows Generalized Inverse Gaussian
distribution(denoted as X ∼ N−(λ, χ, ψ)) if its density function could be represented as

f (x) =
χ−λ(
√
χψ)λ

2Kλ(
√
χψ)

xλ−1 exp
{
−

1
2

(χx−1 + ψx)
}
, x > 0.

where Kλ denotes the third kind modified Bessel function, and the parameters satisfy
χ > 0, ψ ≥ 0, if λ < 0;
χ > 0, ψ > 0, if λ = 0;
χ ≥ 0, ψ > 0, if λ > 0.

After some algebraic manipulations, it is easy to show that Z|X follows Generalized Inverse
Gaussian distribution:

Z|X ∼ N−
(2 − n

2
, x′Σ−1x , 2 + µ′Σ−1µ

)
.

If χ > 0, ψ > 0, the moments could be calculated through the following formulas:

E(Xα) =
(χ
ψ

)α/2 Kλ+α(
√
χψ)

Kλ(
√
χψ)

, α ∈ R,

E(ln X) =
dE(Xα)

dα

∣∣∣∣
α=0
.

Denote χ = x′Σ−1x, ψ = 2 +µ′Σ−1µ. Then, Z|X ∼ N−(2−n
2 , χ, ψ). From the conditional density function

of (3.1), we can obtain the conditional expectations with the following moment properties:

at = E(zt|xt, µ̂, Σ̂) =

√
χt

ψ

K n
2−2(
√
χtψ)

K n
2−1(
√
χtψ)

, t = 1, 2, · · · ,T ;

bt = E(z−1
t |xt, µ̂, Σ̂) =

√
ψ

χt

K n
2
(
√
χtψ)

K n
2−1(
√
χtψ)

, t = 1, 2, · · · ,T.

where χt = x′tΣ−1xt, R(λ) =
Kλ+1(x)
Kλ(x) is strictly decreasing in x with limx→∞ Rλ(x) = 1 and limx→0+ Rλ(x) =

∞. Thus, at > 0, bt > 0 , t = 1, 2, · · · ,T .
Finally, if the conditional expectation E(zt|xt, µ̂, Σ̂) and E(z−1

t |xt, µ̂, Σ̂) are replaced by at and bt

respectively, the objective function becomes

Q(µ,Σ|xt, µ̂, Σ̂) = −
T
2

ln |Σ| +
T∑

t=1

x′tΣ
−1µ −

1
2

T∑
t=1

btx′tΣ
−1xt −

1
2
µ′Σ−1µ

T∑
t=1

at. (3.2)
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Denote S = Σ−1. The objective function (3.2) becomes

Q(µ,Σ|xt, µ̂, Ŝ) =
T
2

ln |S| +
T∑

t=1

x′tSµ −
1
2

T∑
t=1

btx′tSxt −
1
2
µ′Sµ

T∑
t=1

at. (3.3)

Taking derivative of objective function (3.3) with respect to µ,S, we obtain

∂Q
∂µ

=

T∑
t=1

x′tS −
T∑

t=1

atµ
′S = 0,

∂Q
∂S

=
T
2

S−1 −
1
2

T∑
t=1

btx′t xt +

T∑
t=1

x′tµ −
1
2

T∑
t=1

atµ
′µ = 0.

Substituting S by Σ and setting these derivatives to zero yield

T∑
t=1

x′tΣ
−1 −

T∑
t=1

atµ
′Σ−1 = 0,

T
2
Σ −

1
2

T∑
t=1

btx′t xt +

T∑
t=1

x′tµ −
1
2

T∑
t=1

atµ
′µ = 0.

Thus, maximization of the objective function Q(µ,Σ|xt, µ̂, Σ̂) can be achieved by the following iterative
updating formulas:

µ̂ =
x̄
ā

; Σ̂ = btx′t xt −
x̄′ x̄
ā
.

where ā, b̄ stand for the average of {at}
T
t=1 and {bt}

T
t=1 respectively and x̄ is the average of {xt}

T
t=1. In

what follows, we present the iterative reweighted Expectation-Maximization algorithm for parameter
estimation of Asymmetric Laplace distribution.
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Algorithm 1 Iterative reweighting algorithm

1. Set iteration number k = 1 and select initial estimates for parameters µ(0),Σ(0).
2. (E-Step) At k-th iteration with current estimates µ(k),Σ(k), define the corresponding log-likelihood

as

l(k) = log
T∑

t=1

f (xt|µ
(k),Σ(k)), k = 1, 2, · · · .

With notations χt = x′tΣ−1xt, ψ = 2 + µ′Σ−1µ, we can obtain iterative weights

at = E(zt|xt, µ̂, Σ̂) =

√
χt

ψ

K2− n
2
(
√
χtψ)

K1− n
2
(
√
χtψ)

, t = 1, 2, · · · ,T ;

bt = E(z−1
t |xt, µ̂, Σ̂) =

√
ψ

χt

K− n
2
(
√
χtψ)

K1− n
2
(
√
χtψ)

, t = 1, 2, · · · ,T.

3. (M-Step) Employ the following iteration formulas to calculate the new estimates µ(k+1),Σ(k+1) at
(k + 1)-th iteration:

µ(k+1) =
x̄
ā
, Σ(k+1) = btx′t xt −

x̄′ x̄
ā
. (3.4)

The log-likelihood at (k + 1)-th iteration becomes

l(k+1) = log
T∑

t=1

f (xt|µ
(k+1),Σ(k+1)).

4. Repeat these iteration steps until convergence with criterion l(k+1)− l(k) < ε, where ε > 0 is a small
number that control the convergence precision, for convenience, we take ε = 1e−16.

4. Simulation studies

To evaluate the performance of portfolio selection models and parameter estimation methods in
Section 3, we generate 100 datasets from Gaussian distribution and Asymmetric Laplace distribution
respectively. Each dataset consists of T = 200 observations with the following parameter settings:
Case (1): n = 3 ,µ = (0.03 , 0.06 , 0.09); Case (2): n = 5 ,µ = (0.01 , 0.02 , 0.06 , 0.08 , 0.09); Case (3):
n = 10 ,µ = (0.01 , 0.02 , 0.03 , · · · , 0.10). For each case, we set Σ = diag (µ/10). All the simulation
studies are carried out on a PC with Intel Core i7 3.6 GHz processor under R platform.

Each dataset are estimated under both multivariate Gaussian and Asymmetric Laplace distribution.
ALD (EM-AL) is estimated using the EM algorithm described in Section 3.2. We evaluate the
estimation performance using Bias measure, defined as Bias = ‖µ̂ − µ‖1 + ‖Σ̂ − Σ‖1. The mean
log-likelihood and mean bias of the simulated 200 datasets are reported in Table 1.

Table 1 indicate that if the model is correctly specified, the estimation performance is always the
best in terms of bias. If the data is generated from Gaussian distribution, the estimation from Gaussian
model is the best, so does Asymmetric Laplace distribution. If data is generated from Gaussian
distribution, then the estimation log-likelihood of Gaussian model is larger than Asymmetric Laplace
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distribution, this is true for Asymmetric Laplace data as well.

Table 1. Model fitting results of Gaussian data and Asymmetric Laplace data using Gauss
Model and EM-AL Model.

Gaussian Data
Log-Likelihood Bias

Gauss EM-AL Gauss Moment-AL EM-AL
Case (1) 709.6159 641.2472 0.0153 0.0451 0.0183
Case (2) 1363.0231 1260.3676 0.0280 0.0886 0.0319
Case (3) 2593.1151 2432.2192 0.0672 0.3309 0.0766

Asymmetric Laplace Data
Log-Likelihood Bias

Gauss EM-AL Gauss Moment-AL EM-AL
Case (1) 619.1798 735.0847 0.0542 0.0252 0.0226
Case (2) 1250.7110 1463.9149 0.0870 0.0376 0.0302
Case (3) 2432.3401 2919.9878 0.3750 0.1304 0.0832

Figure 3. Efficient frontiers of simulated Gaussian data of case (1)–(3) using Gaussian and
EM-AL model.

Figure 3 show that for Gaussian data, since Gaussian data fit the model better, efficient frontiers
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under Gaussian data are more close to Gaussian models; Figure 4 indicate that for generated
Asymmetric Laplace data, efficient frontiers nearly equivalent to true Asymmetric Laplace data.
Figure 3–4 suggest that we can first modeling data using Gaussian and Asymmetric Laplace
distribution, and use the fitted log-likelihood to determine the distribution, then we evaluate the
performance with the corresponding efficient frontier analysis.

Figure 4. Efficient frontiers of simulated Asymmetric Laplace data of case (1)–(3) using
Gaussian and EM-AL model.

5. Real data analysis

In this section, we apply our proposed methodology to two real financial datasets, Hang Seng
Index and Nasdaq Index, both datasets are downloaded from Bloomberg, with daily data range from
January 4, 2011, to December 29, 2017. The variable of interest is the rate of returns multiplied by the
annualized ratio

√
252, formulated as

LogRet (t) =
√

252
{

log
(
price[t + 1]

)
− log

(
price[t]

)}
, t = 1, 2, · · · , 1721.

These two datasets are analyzed through efficient frontier analysis under ALD framework on R
platform. Theorem 3.1–3.2 indicate that portfolio selection models under ALD framework can be
reduced to the following quadratic programming problem:

min
w
σ2 = w′Σw s.t. w′µ = r0 ,w′1 = 1.
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with explicit solution (see Lai and Xing, 2008) as follows:

ŵ =
D − r0B
AD − B2Σ

−11 +
r0A − B
AD − B2Σ

−1µ. (5.1)

Here, A = 1′Σ−11, B = 1′Σ−1µ and D = µ′Σ−1µ.

5.1. Example 1: Hang seng index

In the first example, we construct a portfolio consisting of 8 Hang Seng indexes: HK1, HK175,
HK2007, HK2318, HK4, HK6, HK66. The summary descriptive statistics are reported in Table 2. It
is clear that the all stock returns exhibit larger skewness and kurtosis. The median of these stocks are
close to zero, the log-likelihood of Asymmetric Laplace distribution is larger than gaussian distribution,
indicating that Asymmetric Laplace distribution would be a good fit than gaussian distribution.

Table 2. Hang Seng data statistics.
Descriptive Statistics

StD Mean Median Skewness Kurtosis Jarq.Test Jarq.Prob
HK1 19.7819 0.2370 0.0000 3.9601 71.8163 375244.7434 0.0000

HK175 3.7101 0.2183 0.0000 1.1510 28.6192 59264.8528 0.0000
HK2007 2.1968 0.1115 0.0000 0.5928 16.5623 19825.4392 0.0000
HK2318 12.6007 0.3431 0.0000 0.6174 6.2371 2908.6947 0.0000

HK4 5.8690 0.0409 0.0000 0.4894 7.6362 4263.7750 0.0000
HK6 13.0712 0.1517 0.0000 -1.1430 20.3112 30037.3385 0.0000
HK66 5.8708 0.1545 0.0000 -1.7941 19.9392 29510.3684 0.0000

Gaussian EM-AL
Log-likelihood -39707.45 -37865.83

Parameter Estimation
HK1 HK175 HK2007 HK2318 HK4 HK6 HK66

µ 0.2370 0.2183 0.1115 0.3431 0.0409 0.1517 0.1545
Σ HK1 HK175 HK2007 HK2318 HK4 HK6 HK66

HK1 406.4426 12.8089 11.4547 130.0934 68.3857 94.4069 60.3087
HK175 12.8089 7.3656 1.6330 12.0356 4.7467 4.8725 3.6070
HK2007 11.4547 1.6330 3.8506 9.9261 4.6830 3.9055 2.4395
HK2318 130.0934 12.0356 9.9261 174.0423 42.1879 48.2877 35.0499

HK4 68.3857 4.7467 4.6830 42.1879 44.6336 26.5314 17.6232
HK6 94.4069 4.8725 3.9055 48.2877 26.5314 205.1471 32.5570
HK66 60.3087 3.6070 2.4395 35.0499 17.6232 32.5570 41.6153

Then we fit the data to Asymmetric Laplace distribution through EM algorithm as described in
Section 3.2. Parameter estimation results are displayed in Table 2, we construct portfolios under
Asymmetric Laplace framework at different levels of expected return. Consider increasing target
expected return values

r0 = 0.040 , 0.0745 , 0.1081 , 0.1417 , 0.1753 , 0.2088 , 0.2424 , 0.2760 , 0.3096 , 0.3431 .

Portfolio selection results are summarized in Table 3, with kurtosis, skewness, sharpe ratio, VaR and
ES results at α = 0.01, 0.05, 0.10 levels.
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Table 3. Efficient frontier results of Hang Seng data
r µ σ Skew Kurt Sharpe VaR0.01 ES0.01 VaR0.05 ES0.05 VaR0.10 ES0.10

1 0.0409 0.0409 2.5461 0.0482 6.0016 0.0161 6.9429 8.7229 4.0782 5.8582 2.8444 4.6244
2 0.0745 0.0745 2.0565 0.1086 6.0079 0.0362 5.5080 6.9254 3.2268 4.6442 2.2444 3.6618
3 0.1081 0.1081 1.7299 0.1869 6.0233 0.0625 4.5256 5.6960 2.6420 3.8124 1.8308 3.0011
4 0.1417 0.1417 1.6650 0.2537 6.0430 0.0851 4.2684 5.3771 2.4841 3.5928 1.7156 2.8243
5 0.1753 0.1753 1.8891 0.2763 6.0510 0.0928 4.8095 6.0606 2.7960 4.0471 1.9288 3.1799
6 0.2088 0.2088 2.3199 0.2682 6.0480 0.0900 5.9208 7.4601 3.4434 4.9827 2.3764 3.9157
7 0.2424 0.2424 2.8656 0.2523 6.0425 0.0846 7.3493 9.2579 4.2774 6.1861 2.9544 4.8631
8 0.2760 0.2760 3.4724 0.2372 6.0375 0.0795 8.9467 11.2679 5.2108 7.5321 3.6018 5.9231
9 0.3096 0.3096 4.1134 0.2247 6.0337 0.0753 10.6386 13.3966 6.1999 8.9578 4.2882 7.0462
10 0.3431 0.3431 4.7749 0.2147 6.0307 0.0719 12.3871 15.5962 7.2222 10.4313 4.9978 8.2069

Figure 5. ALD Efficient Frontier of Hang Seng Data.

Figure 6. Skewness, Kurtosis and Sharpe Ratio Tendency of Hang Seng Data.

The efficient frontier tendencies are displayed in Figure 5. It is suggested that aggressive investors
should impose higher confidence levels and conservative investors may choose smaller confidence
levels. Figure 6 depicts the kurtosis, skewness, and sharpe ratio tendency of portfolio selection models.
Results show that Sharpe Ratio, Skewness and Kurtosis increase fast and decreases slowly down as the
target expected returns increases.
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5.2. Example 2: Nasdaq index

In the second example, we consider Nasdaq index, including CTRP, MNST, NFLX, NTES, NVDA,
TTWO, and report the descriptive statistics in Table 4. All the indexes exhibit significant skewness and
kurtosis. Jarq.Test results indicate that this dataset deviates from normality significantly. We fit the
log returns data to Gaussian and Asymmetric Laplace distributions. Since Asymmetric Laplace model
achieve higher log-likelihood results compared to Gaussian model, we choose EM-AL model for data
fitting. Parameter estimation results are displayed in Table 4.

Table 4. Nasdaq data statistics.
Descriptive Statistics

StD Mean Median Skewness Kurtosis Jarq.Test Jarq.Prob
CTRP 12.5853 0.2100 0.0000 1.5907 16.5100 20786.4126 0.0000
MNST 10.0679 0.4904 0.1587 1.9632 25.7988 50065.6119 0.0000
NFLX 32.9311 1.5015 -0.0079 1.0314 20.0251 29796.6074 0.0000
NTES 58.0910 2.7817 1.2700 1.2457 26.0418 50315.0307 0.0000
NVDA 25.2360 1.6024 0.3175 1.7413 40.3981 120864.0386 0.0000
TTWO 12.2826 0.8786 0.1587 2.1392 52.3926 203127.9368 0.0000

Gaussian EM-AL
Log-Likelihood -46400.25 -42798.03

Parameter Estimation
CTRP MNST NFLX NTES NVDA TTWO

µ 0.2100 0.4904 1.5015 2.7817 1.6024 0.8786
Σ CTRP MNST NFLX NTES NVDA TTWO

CTRP 187.1236 25.4281 129.9104 246.6268 46.1539 40.0369
MNST 25.4281 116.7107 51.2572 82.0634 26.2438 23.5405
NFLX 129.9104 51.2572 900.1261 327.6980 122.5361 83.8650
NTES 246.6268 82.0634 327.6980 2380.8894 213.1414 121.1493
NVDA 46.1539 26.2438 122.5361 213.1414 259.7019 53.8530
TTWO 40.0369 23.5405 83.8650 121.1493 53.8530 111.0020

Then we consider increasing target expected returns

r0 = 0.2100, 0.4958, 0.7815, 1.0673, 1.3530, 1.6388, 1.9245, 2.2102, 2.4960, 2.7817.

Results of skewness, kurtosis, sharpe ratio and VaR, ES results are summarized in Table 5. Figure
7 displays the efficient frontiers at confidence level α = 0.01, 0.05, 0.10. These results show that the
portfolio capture higher risk at higher α levels. Figure 8 displays the skewness, kurtosis, and Sharpe
Ratio Tendency. The optimal portfolios can be obtained from (5.1) with the corresponding VaR, ES,
skewness, kurtosis and Sharpe Ratio.

Table 5 and Figure 7 suggests that as r0 increases, all ES (ES0.01, ES0.05, ES0.10) increases, indicating
that higher return is derived from higher risk. It is interesting that under the ALD assumption, as r0

increases, Sharpe ratio and skewness first decreases then increases accordingly. As α increases, VaR
and ES measures decreases. Thus, conservative investors can choose larger α levels and aggressive
investors would select smaller α levels.
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Table 5. Efficient frontier analysis of Nasdaq data.
r µ σ Skew Kurt Sharpe VaR0.01 ES0.01 VaR0.05 ES0.05 VaR0.10 ES0.10

1 0.2100 0.2100 8.5237 0.0739 6.0036 0.0246 23.0672 28.9903 13.5344 19.4575 9.4288 15.3519
2 0.4958 0.4958 7.5957 0.1951 6.0254 0.0653 19.8220 24.9509 11.5675 16.6963 8.0125 13.1413
3 0.7815 0.7815 7.8219 0.2973 6.0590 0.0999 19.7857 24.9397 11.4907 16.6447 7.9183 13.0723
4 1.0673 1.0673 9.1167 0.3472 6.0806 0.1171 22.7065 28.6414 13.1547 19.0896 9.0409 14.9758
5 1.3530 1.3530 11.1127 0.3608 6.0870 0.1218 27.5608 34.7713 15.9560 23.1665 10.9581 18.1686
6 1.6388 1.6388 13.5025 0.3597 6.0865 0.1214 33.4993 42.2627 19.3952 28.1586 13.3208 22.0843
7 1.9245 1.9245 16.1117 0.3541 6.0838 0.1194 40.0422 50.5132 23.1898 33.6608 15.9318 26.4028
8 2.2102 2.2102 18.8494 0.3478 6.0808 0.1173 46.9392 59.2083 27.1927 39.4619 18.6883 30.9575
9 2.4960 2.4960 21.6671 0.3418 6.0781 0.1152 54.0563 68.1800 31.3251 45.4488 21.5353 35.6590
10 2.7817 2.7817 24.5371 0.3365 6.0757 0.1134 61.3178 77.3329 35.5424 51.5576 24.4416 40.4567

Figure 7. ALD efficient frontier of Hang Seng data.

Figure 8. Skewness, kurtosis and Sharpe Ratio tendency of Nasdaq data.

6. Conclusion and prospects

In this paper, we derive several equivalent portfolio selection models under ALD framework, these
models can be transformed to quadratic programming problem with explicit solutions. The
Expectation-Maximization algorithm for parameter estimation of Asymmetric Laplace distribution is
obtained and outperforms moment estimation.
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There are several advantages of Asymmetric Laplace distribution based models. First, the
equivalence of risk measures such as VaR, ES and StD at maximization of skewness and minimization
of kurtosis faciliate portfolio selection models significantly. Second, confidence levels of these
models offer investors various portfolio selection choices. Conservative investors can choose larger α
levels and aggressive investors can select smaller α levels. Finally, ALD model is able to explain
skewness and kurtosis in financial data. Therefore, the Asymmetric Laplace distribution can be
widely applied to handle real financial datasets.

We may further extend the Asymmetric Laplace based portfolio selection model to cases of mixture
Asymmetric Laplace distributions. Another direction is to combine clustering techniques (see Dias et
al., 2015; Iorio et al., 2018) with Asymmetric Laplace distribution for portfolio selection of time series
models.
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