Research article Special Issues

Some new inequalities of the Grüss type for conformable fractional integrals

  • Received: 20 October 2018 Accepted: 23 November 2018 Published: 29 November 2018
  • In the paper, the authors establish some new inequalities of the Grüss type for conformable fractional integrals. These inequalities generalize some known results.

    Citation: Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi. Some new inequalities of the Grüss type for conformable fractional integrals[J]. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575

    Related Papers:

    [1] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [2] Tariq A. Aljaaidi, Deepak B. Pachpatte . Some Grüss-type inequalities using generalized Katugampola fractional integral. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070
    [3] Erhan Set, Ahmet Ocak Akdemir, Abdurrahman Gözpınar, Fahd Jarad . Ostrowski type inequalities via new fractional conformable integrals. AIMS Mathematics, 2019, 4(6): 1684-1697. doi: 10.3934/math.2019.6.1684
    [4] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [5] Erhan Deniz, Ahmet Ocak Akdemir, Ebru Yüksel . New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals. AIMS Mathematics, 2020, 5(2): 956-965. doi: 10.3934/math.2020066
    [6] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [7] Tahir Ullah Khan, Muhammad Adil Khan . Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002
    [8] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [9] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [10] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
  • In the paper, the authors establish some new inequalities of the Grüss type for conformable fractional integrals. These inequalities generalize some known results.



    In [7], Grüss showed an integral inequality which connects the integral of the product of two functions and the product of integrals for these two function. This inequality reads that, if f and g are two continuous functions on [a,b] satisfying mf(τ)M and ng(τ)N for all τ[a,b] and m,M,n,NR, then

    |1babaf(τ)g(τ)dt1(ba)2baf(τ)dtbag(τ)dt|14(Mm)(Nn). (1.1)

    For more information on the Grüss inequality (1.1), please refer to [11, Chapter X] and closely related references therein.

    In the latest decades, the fractional integral inequalities involving the Riemann-Liouville fractional integrals have been widely studied by various researchers. The interested readers can refer to the work in [1,2,3,5,17,22,24]. In [3], Dahmani introduced the following fractional integral inequalities for the Riemann-Liouville fractional integrals: if f and g are two integrable functions on [0,) satisfying mf(τ)M and ng(τ)N for all τ[0,) and m,M,n,NR, then, for all τ,α,β>0, we have

    |ταΓ(α+1)Iα(fg)(τ)Iαf(τ)Iαg(τ)|[ταΓ(α+1)]2(Mm)(Nn)

    and

    [ταΓ(α+1)Iβ(fg)(τ)τβΓ(β+1)Iα(fg)(τ)Iαf(τ)Iβg(τ)Iβf(τ)Iαg(τ)]2[(MταΓ(α+1)Iαf(τ))(Iβf(τ)mτβΓ(β+1))+(Iαf(τ)mταΓ(α+1))(MτβΓ(β+1)Iβf(τ))]×[(NταΓ(α+1)Iαg(τ))(Iβg(τ)nτβΓ(β+1))+(Iαg(τ)nταΓ(α+1))(NτβΓ(β+1)Iβg(τ))],

    where Γ is the classical Euler gamma function [12,13,21] and the Riemann-Liouville fractional integral Iμ of order μ0 for a function fL1((0,),R) is defined [10] by I0f(x)=f(x) and

    Iμf(x)=1Γ(μ)x0(xτ)μ1f(τ)dτ,(μ)>0.

    The Riemann-Liouville fractional integrals Iμα+ and Iμβ of order μ>0 are defined respectively by

    Iμα+f(x)=1Γ(μ)xα(xτ)μ1f(τ)dτ,x>α,(μ)>0 (1.2)

    and

    Iμβf(x)=1Γ(μ)βx(xτ)μ1f(τ)dτ,x<β,(μ)>0. (1.3)

    For more details about fractional integral operators (1.2) and (1.3), please refer to [4,6,9,10,15,16,18] and closely related references.

    The left and right sided fractional conformable integral operators are respectively defined [8] by

    λIμa+f(x)=1Γ(λ)xa[(xa)μ(τa)μμ]λ1f(τ)(τa)1μdτ (1.4)

    and

    λIμbf(x)=1Γ(λ)bx[(bx)μ(bτ)μμ]λ1f(τ)(bτ)1μdτ, (1.5)

    where (λ)>0. Obviously, if taking a=0 and μ=1, then (1.4) reduces to the Riemann-Liouville fractional integral (1.2). Similarly, if setting b=0 and μ=1, then (1.5) becomes the Riemann–Liouville fractional integral (1.3).

    In [19] the conformable fractional integral

    βIμf(x)=1Γ(β)x0(xμτμμ)β1f(τ)τ1μdτ. (1.6)

    was defined. From (1.6), one can obtain easily that αIμβIμf(x)=β+αIμf(x) and αIμβIμf(x)=βIμαIμf(x).

    In this paper, we will empoy the conformable fractional integral (1.6) to establish some new inequalities of the Grüss type for conformable fractional integrals.

    We are now in a position to state and prove our main results.

    Theorem 2.1. Let f be an integrable function on [0,). Assume that there exist two integrable functions ϕ1,ϕ2 on [0,) such that

    ϕ1(x)f(x)ϕ2(x),x[0,). (2.1)

    Then, for x,α,β>0, we have

    βIμϕ1(x)αIμf(x)+αIμϕ2(x)βIμf(x)αIμϕ2(x)βIμϕ1(x)+αIμf(x)βIμf(x). (2.2)

    Proof. From (2.1), for all τ,ρ0, it follows that [ϕ2(τ)f(τ)][f(ρ)ϕ1(ρ)]0. Therefore, we have

    ϕ2(τ)f(ρ)+ϕ1(ρ)f(τ)ϕ1(ρ)ϕ2(τ)+f(τ)f(ρ). (2.3)

    Multiplying both sides of (2.3) by 1Γ(α)(xμτμμ)α1τμ1 and integrating over τ(0,x) lead to

    f(ρ)x01Γ(α)(xμτμμ)α1τμ1ϕ2(τ)dτ+ϕ1(ρ)x01Γ(α)(xμτμμ)α1τμ1f(τ)dτϕ1(ρ)x01Γ(α)(xμτμμ)α1τμ1ϕ2(τ)dτ+f(ρ)x01Γ(α)(xμτμμ)α1τμ1f(τ)dτ

    which gives

    f(ρ)αIμϕ2(x)+ϕ1(ρ)αIμf(x)ϕ1(ρ)αIμϕ2(x)+f(ρ)αIμf(x). (2.4)

    Multiplying both sides of (2.4) by 1Γ(β)(xμρμμ)β1ρμ1 and integrating over ρ(0,x) result in

    αIμϕ2(x)x01Γ(β)(xμρμμ)β1ρμ1f(ρ)dρ+αIμf(x)x01Γ(β)(xμρμμ)β1ρμ1ϕ1(ρ)dραIμϕ2(x)x01Γ(β)(xμρμμ)β1ρμ1ϕ1(ρ)dρ+αIμf(x)x01Γ(β)(xμρμμ)β1ρμ1f(ρ)dρ.

    which gives the required inequality (2.2).

    From Theorem 2.1, we can derive the following two corollaries.

    Corollary 2.1. Let f be an integrable function on [0,) satisfying mf(x)M for all x[0,) and m,MR.Then, for x,α,β>0, we have

    mxμβμβΓ(β+1)αIμf(x)+MxμαμαΓ(α+1)βIμf(x)mMxμ(α+β)μα+βΓ(α+1)Γ(β+1)+αIμf(x)βIμf(x).

    Corollary 2.2. Let f be an integrable function on [0,) satisfying xμf(x)xμ+1 for all x[0,). Then, for x,α>0, we have

    [2xμ(α+1)μαΓ(α+2)+xμαμαΓ(α+1)]αIμf(x)[xμ(α+1)μαΓ(α+2)+xμαμαΓ(α+1)][xμ(α+1)μαΓ(α+2)]+[αIμf(x)]2.

    Theorem 2.2. Let f and g be two integrable function on [0,). Suppose that the inequality (2.1) holds and that there exist two integrable functions ψ1 and ψ2 on [0,) such that

    ψ1(x)g(x)ψ2(x),x[0,). (2.5)

    Then, for x,α,β>0, the following four inequalities hold:

    βIμψ1(x)αIμf(x)+αIμϕ2(x)βIμg(x)αIμϕ2(x)βIμψ1(x)+αIμf(x)βIμg(x), (2.6)
    βIμϕ1(x)αIμg(x)+αIμψ2(x)βIμf(x)αIμϕ1(x)βIμψ2(x)+αIμf(x)βIμg(x), (2.7)
    αIμϕ2(x)βIμψ2(x)+αIμf(x)βIμg(x)αIμϕ2(x)βIμg(x)+βIμψ2(x)αIμf(x), (2.8)
    αIμϕ1(x)βIμψ1(x)+αIμf(x)βIμg(x)αIμϕ1(x)βIμg(x)+αIμf(x)βIμψ1(x). (2.9)

    Proof. From (2.1) and (2.5) and for x[0,), we have [ϕ2(τ)f(τ)][g(ρ)ψ1(ρ)]0. Therefore, it follows that

    ϕ2(τ)g(ρ)+ψ1(ρ)f(τ)ψ1(ρ)ϕ2(τ)+f(τ)g(ρ). (2.10)

    Multiplying both sides of (2.10) by 1Γ(α)(xμτμμ)α1τμ1 and integrating over τ(0,x) arrive at

    g(ρ)x01Γ(α)(xμτμμ)α1τμ1ϕ2(τ)dτ+ψ1(ρ)x01Γ(α)(xμτμμ)α1τμ1f(τ)dτψ1(ρ)x01Γ(α)(xμτμμ)α1τμ1ϕ2(τ)dτ+g(ρ)x01Γ(α)(xμτμμ)α1τμ1f(τ)dτ

    which gives

    g(ρ)αIμϕ2(x)+ψ1(ρ)αIμf(x)ψ1(ρ)αIμϕ2(x)+g(ρ)αIμf(x). (2.11)

    Multiplying both sides of (2.11) by 1Γ(β)(xμρμμ)β1ρμ1 and integrating over ρ(0,x) reveal

    αIμϕ2(x)x01Γ(β)(xμρμμ)β1ρμ1g(ρ)dρ+αIμf(x)x01Γ(β)(xμρμμ)β1ρμ1ψ1(ρ)dραIμϕ2(x)x01Γ(β)(xμρμμ)β1ρμ1ψ1(ρ)dρ+αIμf(x)x01Γ(β)(xμρμμ)β1ρμ1g(ρ)dρ.

    which gives the required inequality (2.6).

    Making use of the inequalities [ψ2(τ)g(τ)][f(ρ)ϕ1(ρ)]0, [ϕ2(τ)f(τ)][g(ρ)ψ2(ρ)]0, and [ϕ1(τ)f(τ)][g(ρ)ψ1(ρ)]0, we can prove (2.7) to (2.9).

    Corollary 2.3. Let f and g be two integrable functions on [0,). Assume that there exist m,M,n,NR such that mf(x)M and ng(x)N for x[0,). Then we have the following four inequalities

    nxμβμβΓ(β+1)αIμf(x)+MxμαμαΓ(α+1)βIμg(x)nMxμ(α+β)μα+βΓ(α+1)Γ(β+1)+αIμf(x)βIμg(x),mxμβμβΓ(β+1)αIμg(x)+NxμαμαΓ(α+1)βIμf(x)mNxμ(α+β)μα+βΓ(α+1)Γ(β+1)+βIμf(x)αIμg(x),MNxμ(α+β)μα+βΓ(α+1)Γ(β+1)+βIμf(x)αIμg(x)MxμαμαΓ(α+1)βIμg(x)+NxμβμβΓ(β+1)αIμf(x),

    and

    mnxμ(α+β)μα+βΓ(α+1)Γ(β+1)+βIμf(x)αIμg(x)mxμαμαΓ(α+1)βIμg(x)+nxμβμβΓ(β+1)αIμf(x).

    Theorem 2.3. Let f be an integrable function on [0,) and let ϕ1 and ϕ2 be two integrable functions on [0,). Assume that the inequality (2.1) holds. Then, for x,α>0, we have

    xμαμαΓ(α+1)αIμf2(x)[αIμf(x)]2=[αIμϕ2(x)αIμf(x)][αIμf(x)αIμϕ1(x)]xμαμαΓ(α+1)αIμ[ϕ2(x)f(x)][f(x)ϕ1(x)]+xμαμαΓ(α+1)αIμϕ1f(x)αIμϕ1(x)αIμf(x)+xμαμαΓ(α+1)αIμϕ2f(x)αIμϕ2(x)αIμf(x)+αIμϕ1(x)αIμϕ2(x)xμαμαΓ(α+1)αIμϕ1ϕ2(x). (2.12)

    Proof. For τ,ρ>0, we have

    [ϕ2(ρ)f(ρ)][f(τ)ϕ1(τ)]+[ϕ2(τ)f(τ)][f(ρ)ϕ1(ρ)][ϕ2(τ)f(τ)][f(τ)ϕ1(τ)][ϕ2(ρ)f(ρ)][f(ρ)ϕ1(ρ)]=f2(τ)+f2(ρ)2f(τ)f(ρ)+ϕ2(ρ)f(τ)+ϕ1(τ)f(ρ)ϕ1(τ)ϕ2(ρ)+ϕ2(τ)f(ρ)+ϕ1(ρ)f(τ)ϕ1(ρ)ϕ2(τ)ϕ2(τ)f(τ)+ϕ1(τ)ϕ2(τ)ϕ1(τ)f(τ)ϕ2(ρ)f(ρ)+ϕ1(ρ)ϕ2(ρ)ϕ1(ρ)f(ρ). (2.13)

    Multiplying both sides of (2.13) by 1Γ(α)(xμτμμ)α1τμ1 and integrating over τ(0,x) yield

    [ϕ2(ρ)f(ρ)][αIμf(x)αIμϕ1(x)]+[αIμϕ2(x)αIμf(x)][f(ρ)ϕ1(ρ)]αIμ[ϕ2(x)f(x)][f(x)ϕ1(x)][ϕ2(ρ)f(ρ)][f(ρ)ϕ1(ρ)]xμαμαΓ(α+1)=αIμf2(x)+f2(ρ)xμαμαΓ(α+1)2f(ρ)αIμf(x)+ϕ2(ρ)αIμf(x)+f(ρ)αIμϕ1(x)ϕ2(ρ)αIμϕ1(x)+f(ρ)αIμϕ2(x)+ϕ1(ρ)αIμf(x)ϕ1(ρ)αIμϕ2(x)αIμϕ2f(x)+αIμϕ1ϕ2(x)αIμϕ1f(x)ϕ2(ρ)f(ρ)xμαμαΓ(α+1)+ϕ1(ρ)ϕ2(ρ)xμαμαΓ(α+1)ϕ1(ρ)f(ρ)xμαμαΓ(α+1). (2.14)

    Multiplying both sides of (2.14) by 1Γ(α)(xμρμμ)α1ρμ1 and integrating the resultant identity with respect to ρ from 0 to x bring out

    [αIμϕ2(x)αIμf(x)][αIμf(x)αIμϕ1(x)]+[αIμϕ2(x)αIμf(x)][αIμf(x)αIμϕ1(x)]αIμ[ϕ2(x)f(x)][f(x)ϕ1(x)]xμαμαΓ(α+1)αIμ[ϕ2(ρ)f(ρ)][f(ρ)ϕ1(ρ)]xμαμαΓ(α+1)=xμαμαΓ(α+1)αIμf2(x)+xμαμαΓ(α+1)αIμf2(x)2αIμf(x)αIμf(x)+αIμϕ2(x)αIμf(x)+αIμf(x)αIμϕ1(x)αIμϕ2(x)αIμϕ1(x)+αIμf(x)αIμϕ2(x)+αIμϕ1(x)αIμf(x)αIμϕ1(x)αIμϕ2(x)xμαμαΓ(α+1)αIμϕ2f(x)+xμαμαΓ(α+1)αIμϕ1ϕ2(x)xμαμαΓ(α+1)αIμϕ1f(x)xμαμαΓ(α+1)αIμϕ2f(x)+xμαμαΓ(α+1)αIμϕ1ϕ2(x)xμαμαΓ(α+1)αIμϕ1f(x)

    which yields the required inequality (2.12).

    Corollary 2.4. Let f be an integrable function on [0,) satisfying mf(x)M for all x[0,). Then, for all x,α>0, we have

    xμαμαΓ(α+1)αIμf2(x)[αIμf(x)]2=[MxμαμαΓ(α+1)αIμf(x)][αIμf(x)mxμαμαΓ(α+1)]xμαμαΓ(α+1)αIμ[Mf(x)][f(x)m].

    Theorem 2.4. Let f,g,ϕ1,ϕ2,ψ1, and ψ2 be integrable functions on [0,) satisfying (2.1) and (2.5) on [0,). Then, for all x,α>0, we have

    |xμαμαΓ(α+1)αIμfg(x)αIμf(x)αIμg(x)|T(f,ϕ1,ϕ2)T(g,ψ1,ψ2), (2.15)

    where

    T(u,v,w)=[αIμw(x)αIμu(x)][αIμu(x)αIμv(x)]+xμαμαΓ(α+1)αIμvu(x)αIμv(x)αIμu(x)+xμαμαΓ(α+1)αIμwu(x)αIμw(x)αIμu(x)+αIμv(x)αIμw(x)xμαμαΓ(α+1)αIμvw(x).

    Proof. Define

    H(τ,ρ)=[f(τ)f(ρ)][g(τ)g(ρ)],τ,ρ(0,x),x>0. (2.16)

    Multiplying both sides of (2.16) by 1Γ2(α)(xμτμμ)α1(xμρμμ)α1τμ1ρμ1 for τ,ρ(0,x) and integrating the desired inequality with respect to τ,ρ from 0 to x yield

    12Γ2(α)t0t0(xμτμμ)α1(xμρμμ)α1τμ1ρμ1H(τ,ρ)dτdρ=xμαμαΓ(α+1)αIμfg(x)+αIμf(x)αIμg(x). (2.17)

    Applying the Cauchy-Schwartz inequality to (2.17) leads to

    [xμαμαΓ(α+1)αIμfg(x)+αIμf(x)αIμg(x)]2[xμαμαΓ(α+1)αIμf2(x)[αIμf(x)]2][xμαμαΓ(α+1)αIμg2(x)[αIμg(x)]2]. (2.18)

    Since [ϕ2(x)f(x)][f(x)ϕ1(x)]0 and [ψ2(x)g(x)][g(x)ψ1(x)]0 for x[0,), we have

    xμαμαΓ(α+1)[ϕ2(x)f(x)][f(x)ϕ1(x)]0andxμαμαΓ(α+1)[ψ2(x)g(x)][g(x)ψ1(x)]0.

    Thus, from Theorem 2.3, we obtain

    xμαμαΓ(α+1)αIμf2(x)[αIμf(x)]2[αIμϕ2(x)αIμf(x)][αIμf(x)αIμϕ1(x)]+xμαμαΓ(α+1)αIμϕ1f(x)αIμϕ1(x)αIμf(x)+xμαμαΓ(α+1)αIμϕ2f(x)αIμϕ2(x)αIμf(x)+αIμϕ1(x)αIμϕ2(x)xμαμαΓ(α+1)αIμϕ1ϕ2(x)=T(f,ϕ1,ϕ2). (2.19)

    Similarly, we have

    xμαμαΓ(α+1)αIμg2(x)[αIμg(x)]2[αIμψ2(x)αIμg(x)][αIμg(x)αIμψ1(x)]+xμαμαΓ(α+1)αIμψ1g(x)αIμψ1(x)αIμg(x)+xμαμαΓ(α+1)αIμψ2g(x)αIμψ2(x)αIμg(x)+αIμψ1(x)αIμψ2(x)xμαμαΓ(α+1)αIμψ1ψ2(x)=T(g,ψ1,ψ2). (2.20)

    Combining (2.18), (2.19), and (2.20), we obtain the desired inequality (2.15).

    Remark 2.1. For m,M,n,NR, if T(f,ϕ1,ϕ2)=T(f,m,M) and T(g,ψ1,ψ2)=T(g,n,N), then the inequality (2.15) reduces to

    |xμαμαΓ(α+1)αIμfg(x)αIμf(x)αIμg(x)|[xμα2μαΓ(α+1)]2(Mm)(Nn).

    in [20, Theorem 1].

    Remark 2.2. In this paper, we presented some new conformable fractional integral inequalities which generalize those corresponding ones in [23].

    Remark 2.3. This paper is a slightly revised version of the preprint [14].

    The authors would like to thank anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

    The authors declare that they have no conflict of interest.

    [1] G. A. Anastassiou, Opial type inequalities involving fractional derivatives of two functions and applications, Comput. Math. Appl., 48 (2004), 1701–1731. doi: 10.1016/j.camwa.2003.08.013
    [2] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 86.
    [3] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlin. Sci., 9 (2010), 493–497.
    [4] Z. Dahmani, L. Tabharit, S. Taf, New generalization of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93–99.
    [5] Z. Denton, A. S. Vatsala, Fractional integral inequalities and applications, Comput. Math. Appl., 59 (2010), 1087–1094. doi: 10.1016/j.camwa.2009.05.012
    [6] R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, In: A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Vienna: Springer, 1997.
    [7] G. Grüss, Über das Maximum des absoluten Betrages von 1babaf(x)g(x)dx1(ba)2baf(x)dxbag(x)dx, Math. Z., 39 (1935), 215-226. doi: 10.1007/BF01201355
    [8] F. Jarad, E. Uǧurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z
    [9] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean. Math. Soc., 38 (2001), 1191–1204.
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 1st Edition., Amsterdam: Elsevier Science B.V., 2006.
    [11] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Springer Netherlands, 1993.
    [12] K. S. Nisar, F. Qi, G. Rahman, et al. Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 2018 (2018), 135.
    [13] F. Qi, B. N. Guo, Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function, RACSAM. Rev. R. Acad. A., 111 (2017), 425–434.
    [14] G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, HAL archives, 2018. Available from: https://hal.archives-ouvertes.fr/hal-01871682.
    [15] F. Qi, G. Rahman, S. M. Hussain, et al. Some inequalities of Cěbysěv type for conformable kfractional integral operators, Symmetry., 10 (2018), 614. doi: 10.3390/sym10110614
    [16] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Yverdon: Gordon and Breach Science Publishers, 1993.
    [17] M. Z. Sarkaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integrations, Abstr. Appl. Anal., 2012 (2012), 428983.
    [18] E. Set, İ. İsşcan, M. Z. Sarkaya, et al. On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals, Appl. Math. Comput., 259 (2015), 875–881.
    [19] E. Set, İ. Mumcu, S. Demirbasş, Chebyshev type inequalities involving new conformable fractional integral operators. ResearchGate Preprint, 2018. Available from: https://www.researchgate.net/publication/323880498.
    [20] E. Set, İ. Mumcu, M. E. Özdemir, Grüss type inequalities involving new conformable fractional integral operators. ResearchGate Preprint, 2018. Available from: https://www.researchgate.net/publication/323545750.
    [21] H. M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Amsterdam: Elsevier. Inc, 2012.
    [22] W. T. Sulaiman, Some new fractional integral inequalities, J. Math. Anal., 2 (2011), 23–28.
    [23] J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., 2014 (2014), 869434.
    [24] C. Zhu, W. Yang, Q. Zhao, Some new fractional q-integral Grüss-type inequalities and other inequalities, J. Inequal. Appl., 2012 (2012), 299. doi: 10.1186/1029-242X-2012-299
  • This article has been cited by:

    1. Gauhar Rahman, Aftab Khan, Thabet Abdeljawad, Kottakkaran Sooppy Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, 2019, 2019, 1687-1847, 10.1186/s13662-019-2229-7
    2. Gauhar Rahman, Thabet Abdeljawad, Fahd Jarad, Aftab Khan, Kottakkaran Sooppy Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, 2019, 2019, 1687-1847, 10.1186/s13662-019-2381-0
    3. Gauhar Rahman, Kottakkaran Sooppy Nisar, Behzad Ghanbari, Thabet Abdeljawad, On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals, 2020, 2020, 1687-1847, 10.1186/s13662-020-02830-7
    4. Asifa Tassaddiq, Gauhar Rahman, Kottakkaran Sooppy Nisar, Muhammad Samraiz, Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals, 2020, 2020, 1687-1847, 10.1186/s13662-020-2543-0
    5. Kottakkaran Sooppy Nisar, Asifa Tassaddiq, Gauhar Rahman, Aftab Khan, Some inequalities via fractional conformable integral operators, 2019, 2019, 1029-242X, 10.1186/s13660-019-2170-z
    6. Kottakkaran Sooppy Nisar, Gauhar Rahman, Dumitru Baleanu, Muhammad Samraiz, Sajid Iqbal, On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function, 2020, 2020, 1687-1847, 10.1186/s13662-020-03075-0
    7. Gauhar Rahman, Kottakkaran Sooppy Nisar, Sami Ullah Khan, Dumitru Baleanu, V. Vijayakumar, On the weighted fractional integral inequalities for Chebyshev functionals, 2021, 2021, 1687-1847, 10.1186/s13662-020-03183-x
    8. Feng Qi, Siddra Habib, Shahid Mubeen, Muhammad Nawaz Naeem, Generalized k-fractional conformable integrals and related inequalities, 2019, 4, 2473-6988, 343, 10.3934/math.2019.3.343
    9. Gauhar Rahman, Kottakkaran Sooppy Nisar, Saima Rashid, Thabet Abdeljawad, Certain Grüss-type inequalities via tempered fractional integrals concerning another function, 2020, 2020, 1029-242X, 10.1186/s13660-020-02420-x
    10. Gauhar Rahman, Thabet Abdeljawad, Fahd Jarad, Kottakkaran Sooppy Nisar, Bounds of Generalized Proportional Fractional Integrals in General Form via Convex Functions and Their Applications, 2020, 8, 2227-7390, 113, 10.3390/math8010113
    11. Kottakkaran Sooppy Nisar, Gauhar Rahman, Khaled Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, 2019, 2019, 1029-242X, 10.1186/s13660-019-2197-1
    12. Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Certain Hadamard Proportional Fractional Integral Inequalities, 2020, 8, 2227-7390, 504, 10.3390/math8040504
    13. Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Some new inequalities for generalized fractional conformable integral operators, 2019, 2019, 1687-1847, 10.1186/s13662-019-2362-3
    14. Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Asifa Tassaddiq, Moheb Saad Abouzaid, Certain generalized fractional integral inequalities, 2020, 5, 2473-6988, 1588, 10.3934/math.2020108
    15. Gauhar Rahman, Kottakkaran Sooppy Nisar, Abdul Ghaffar, Feng Qi, Some inequalities of the Grüss type for conformable $${\varvec{k}}$$-fractional integral operators, 2020, 114, 1578-7303, 10.1007/s13398-019-00731-3
    16. Asifa Tassaddiq, Aftab Khan, Gauhar Rahman, Kottakkaran Sooppy Nisar, Moheb Saad Abouzaid, Ilyas Khan, Fractional integral inequalities involving Marichev–Saigo–Maeda fractional integral operator, 2020, 2020, 1029-242X, 10.1186/s13660-020-02451-4
    17. Gauhar Rahman, Thabet Abdeljawad, Aftab Khan, Kottakkaran Sooppy Nisar, Some fractional proportional integral inequalities, 2019, 2019, 1029-242X, 10.1186/s13660-019-2199-z
    18. H. M. Rezk, H. A. Abd El-Hamid, A. M. Ahmed, Ghada AlNemer, M. Zakarya, Kottakkaran Sooppy Nisar, Inequalities of Hardy Type via Superquadratic Functions with General Kernels and Measures for Several Variables on Time Scales, 2020, 2020, 2314-8888, 1, 10.1155/2020/6427378
    19. Nematollah Kadkhoda, Hossein Jafari, An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations, 2019, 2019, 1687-1847, 10.1186/s13662-019-2349-0
    20. Feng Qi, Pshtiwan Othman Mohammed, Jen-Chih Yao, Yong-Hong Yao, Generalized fractional integral inequalities of Hermite–Hadamard type for ${(\alpha,m)}$-convex functions, 2019, 2019, 1029-242X, 10.1186/s13660-019-2079-6
    21. Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Tempered Fractional Integral Inequalities for Convex Functions, 2020, 8, 2227-7390, 500, 10.3390/math8040500
    22. Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Samee Ullah, Certain Fractional Proportional Integral Inequalities via Convex Functions, 2020, 8, 2227-7390, 222, 10.3390/math8020222
    23. Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Certain new proportional and Hadamard proportional fractional integral inequalities, 2021, 2021, 1029-242X, 10.1186/s13660-021-02604-z
    24. Abd-Allah Hyder, M. A. Barakat, Ashraf Fathallah, Enlarged integral inequalities through recent fractional generalized operators, 2022, 2022, 1029-242X, 10.1186/s13660-022-02831-y
    25. Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182
    26. Miguel Vivas-Cortez, Muhammad Uzair Awan, Sehrish Rafique, Muhammad Zakria Javed, Artion Kashuri, Some novel inequalities involving Atangana-Baleanu fractional integral operators and applications, 2022, 7, 2473-6988, 12203, 10.3934/math.2022678
    27. Mohamed Bezziou, Zoubir Dehmani, New integral operators for conformable fractional calculus with applications, 2022, 25, 0972-0502, 927, 10.1080/09720502.2021.1880138
    28. Yabin Shao, Gauhar Rahman, Yasser Elmasry, Muhammad Samraiz, Artion Kashuri, Kamsing Nonlaopon, The Grüss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function, 2022, 6, 2504-3110, 546, 10.3390/fractalfract6100546
    29. Gauhar Rahman, Muhammad Samraiz, Saima Naheed, Artion Kashuri, Kamsing Nonlaopon, New classes of unified fractional integral inequalities, 2022, 7, 2473-6988, 15563, 10.3934/math.2022853
    30. Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz, On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities, 2022, 7, 2473-6988, 10256, 10.3934/math.2022571
    31. Arshad Hussain, Gauhar Rahman, Jihad Younis, Muhammad Samraiz, Muhammad Iqbal, Xiaolong Qin, Fractional Integral Inequalities concerning Extended Bessel Function in the Kernel, 2021, 2021, 2314-4785, 1, 10.1155/2021/7325102
    32. Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6
    33. Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080
    34. Abd-Allah Hyder, Çetin Yildiz, New Fractional Inequalities through Convex Functions and Comprehensive Riemann–Liouville Integrals, 2023, 2023, 2314-4785, 1, 10.1155/2023/9532488
    35. Fiza Zafar, Sikander Mehmood, Asim Asiri, Weighted Hermite-Hadamard inequalities for r-times differentiable preinvex functions for k-fractional integrals, 2023, 56, 2391-4661, 10.1515/dema-2022-0254
    36. Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3
    37. Vandana Palsaniya, Ekta Mittal, Sunil Joshi, D. L. Suthar, Gronwall type inequality on generalized fractional conformable integral operators, 2023, 0, 0174-4747, 10.1515/anly-2022-1105
    38. Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal, A comprehensive review of Grüss-type fractional integral inequality, 2023, 9, 2473-6988, 2244, 10.3934/math.2024112
    39. Rui Ying, Abdelghani Lakhdari, Hongyan Xu, Wedad Saleh, Badreddine Meftah, On Conformable Fractional Milne-Type Inequalities, 2024, 16, 2073-8994, 196, 10.3390/sym16020196
    40. Sikander Mehmood, Pshtiwan Othman Mohammed, Artion Kashuri, Nejmeddine Chorfi, Sarkhel Akbar Mahmood, Majeed A. Yousif, Some New Fractional Inequalities Defined Using cr-Log-h-Convex Functions and Applications, 2024, 16, 2073-8994, 407, 10.3390/sym16040407
    41. Ghulam Farid, Sajid Mehmood, Bakri A. Younis, Huda Uones Mohamed Ahamd, Ria H. Egami, Ahmed M. Ibrahim Adam, Generalized Ostrowski and Ostrowski-Grüss type inequalities, 2024, 0009-725X, 10.1007/s12215-024-01102-7
    42. Abdelghani Lakhdari, Bandar Bin-Mohsin, Fahd Jarad, Hongyan Xu, Badreddine Meftah, A parametrized approach to generalized fractional integral inequalities: Hermite–Hadamard and Maclaurin variants, 2024, 10183647, 103523, 10.1016/j.jksus.2024.103523
    43. Gauhar Rahman, Muhammad Samraiz, Kamal Shah, Thabet Abdeljawad, Yasser Elmasry, Advancements in integral inequalities of Ostrowski type via modified Atangana-Baleanu fractional integral operator, 2025, 11, 24058440, e41525, 10.1016/j.heliyon.2024.e41525
    44. Yonghong Liu, Ghulam Farid, Jongsuk Ro, Mawahib Elamin, Sayed Abdel-Khalek, Some well-known inequalities of Ostrowski like for Caputo derivatives, 2025, 33, 2769-0911, 10.1080/27690911.2025.2455190
    45. Bouharket Benaissa, Noureddine Azzouz, Mehmet Sarikaya, On some Grüss-type inequalities via k-weighted fractional operators, 2024, 38, 0354-5180, 4009, 10.2298/FIL2412009B
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5497) PDF downloads(826) Cited by(45)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog