Citation: Bengisen Pekmen Geridönmez. Numerical investigation of ferrofluid convection with Kelvin forces and non-Darcy effects[J]. AIMS Mathematics, 2018, 3(1): 195-210. doi: 10.3934/Math.2018.1.195
[1] | H. Aminfar, M. Mohammadpourfard, S. Ahangar Zonouzi, Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field, J. Magn. Magn. Mater., 327 (2013), 31-42. |
[2] | H. C. Brinkman, (1952) The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952), 571-581. |
[3] | S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluid with nanoparticles, ASME Mechanical Engineering Congress & Exposition, Nov 12-17, Sanfrancisco, 1995. |
[4] | G. E. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific Publications, Singapore, 2007. |
[5] | G. E. Fasshauer, M. McCourt, Kernel-based Approximation Methods using MATLAB, World Scientific Publications, Singapore, 2015. |
[6] | M. A. Geschwendtner, The Eckert number phenomenon: Experimental investigations on the heat transfer from a moving wall in the case of a rotating cylinder, Heat and Mass Transfer, 40 (2004), 551-559. |
[7] | M. Ghasemian, Z. N. Ashrafi, M. Goharkhah, et al. Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields, J. Magn. Magn. Mater., 381 (2015), 158-167. |
[8] | G. H. R. Kefayati, Natural convection of ferrofluid in a linearly heated cavity utilizing LBM, J. Mol. Liq., 191 (2014), 1-9. |
[9] | G. H. R. Kefayati, Simulation of ferrofluid heat dissipation effect on natural convection at an inclined cavity filled with Kerosene/Cobalt utilizing the Lattice Boltzmann Method, Numer. Heat Tr. A-Appl., 65 (2014), 509-530. |
[10] | K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enchancement in a twodimensional enclosure utilizing nanofluids, Int. J. Heat Mass Tran., 46 (2003), 3639-3653. |
[11] | P. A. K. Lam, K. A. Prakash, A numerical study on natural convection and entropy generation in a porous enclosure with heat sources, Int. J. Heat Mass Tran., 69 (2014), 390-407. |
[12] | S. Malik, A. K. Nayak, MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating, Int. J. Heat Mass Tran., 111 (2017), 329-345. |
[13] | J. C. Maxwell-Garnett, Colors in metal glasses and in metallic films, Phil. Trans. Soc. A., 203 (1904), 385-420. |
[14] | M. Muthtamilselvan, P. Kandaswamy, J. Lee, Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 1501-1510. |
[15] | M. M. Rahman, S. Mojumder, S. Saha, et al. Numerical and statistical analysis on unsteady magnetohydrodynamic convection in a semi-circular enclosure filled with ferrofluid, Int. J. Heat Mass Tran., 89 (2015), 1316-1330. |
[16] | B. Geridonmez Pekmen, RBF simulation of natural convection in a nanofluid-filled cavity, AIMS Mathematics, 1 (2016), 195-207. |
[17] | B. Geridonmez Pekmen, Numerical simulation of natural convection in a porous cavity filled with ferrofluid in presence of magnetic source, J. Therm. Eng., 4 (2017), 1756-1769. |
[18] | M. Sheikholeslami, D. D. Ganji, Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer, Energy, 75 (2014), 400-410. |
[19] | M. Sheikholeslami, KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel, Phys. Lett. A, 378 (2014), 3331-3339 |
[20] | M. Sheikholeslami, Effect of uniform suction on nanofluid flow and heat transfer over a cylinder, J. Braz. Soc. Mech. Sci. Eng., 37 (2015), 1623-1633. |
[21] | M. A. Sheremet, H. F. Oztop, I. Pop, et al. MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater, Int. J. Heat Mass Tran., 103 (2016), 955-964. |
[22] | R. K. Tiwari, M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Tran., 50 (2007), 2002-2018. |
[23] | E. E. Tzirtzilakis, M. A. Xenos, Biomagnetic fluid flow in driven cavity, Meccanica, 48 (2013), 187-200. |