[1]
|
G. Benelli and H. Mehlhorn, Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control, Parasitol Res., 115 (2016), 17471754.
|
[2]
|
G. W. Dick, Zika virus. II. Pathogenicity and physical properties, Trans. R. Soc. Trop. Med. Hyg., 46 (1952), 521–534.
|
[3]
|
I. I. Bogoch, O. J. Brady, M. U. G. Kraemer, et al., Anticipating the international spread of Zika virus from Brazil, Lancet, 387 (2016), 335336.
|
[4]
|
E. M. Netto, A. Moreira-Soto, C. Pedroso, et al., High Zika virus seroprevalence in Salvador, Northeastern Brazil limits the potential for further outbreaks, MBio, 8 (2017), e01390–17.
|
[5]
|
D. P. Shutt, C. A. Manore, S. Pankavich, et al., Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America, Epidemics, 21 (2017), 63–79.
|
[6]
|
L. Dinh, G. Chowell, K. Mizumoto, et al., Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016, Theor. Biol. Med. Model., 13 (2016), 20.
|
[7]
|
A. J. Kucharski, S. Funk, R. M. Eggo, et al., Transmission dynamics of Zika virus in island popu- lations: a modelling analysis of the 201314 French Polynesia outbreak, PLoS Negl. Trop. Dis., 10 (2016), e0004726.
|
[8]
|
H. Nishiura, R Kinoshita, K. Mizumoto, et al., Transmission potential of Zika virus infection in the South Pacific, Int. J. Infect. Dis., 45 (2016), 95–97.
|
[9]
|
N. H. Ogden, A. Fazil, D. Safronetz, et al., Risk of travel-related cases of Zika virus infection is predicted by transmission intensity in outbreak-affected countries, Parasit. Vectors, 10 (2017), 41.
|
[10]
|
S. Cauchemez, M. Besnard, P. Bompard, et al., Association between Zika virus and microcephaly in French Polynesia, 20132015: a retrospective study, Lancet, 387 (2016), 2125–2132.
|
[11]
|
J. Mlakar, M. Korva, N. Tul, et al., Zika virus associated with microcephaly, N. Engl. J. Med., 374 (2016), 951–958.
|
[12]
|
V. Sikka, V. K. Chattu, R. K. Popli, et al., The emergence of Zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint working Group (JWG). J. Glob. Infect. Dis., 8 (2016), 3–15.
|
[13]
|
R. W. Malone, J. Homan, M. V. Callahan, et al., Zika Virus: Medical Countermeasure Develop- ment Challenges, PLoS Negl. Trop. Dis., 10 (2016), 1–26.
|
[14]
|
S. A. Rasmussen, D. J. Jamieson, M. A. Honein, et al., Zika virus and birth defects reviewing the evidence for causality, N. Engl. J. Med., 374 (2016), 1981–1987.
|
[15]
|
F. J. Colón-González, C. A. Peres, C. S. S˜ ao Bernardo, et al., After the epidemic: Zika virus projections for Latin America and the Caribbean, PLoS Negl. Trop. Dis., 11 (2017), e0006007.
|
[16]
|
N. D. Grubaugh, J. T. Ladner, M. U. G. Kraemer, et al., Genomic epidemiology reveals multiple introductions of Zika virus into the United States, Nature, 546 (2017), 401–405.
|
[17]
|
J. P. Messina, M. U. Kraemer, O. J. Brady, et al., Mapping global environmental suitability for Zika virus, Elife, 5 (2016), e15272.
|
[18]
|
R. N. Faria, J. Quick, I. Morales, et al., Establishment and cryptic transmission of Zika virus in Brazil and the Americas, Nature, 546 (2017), 406–410.
|
[19]
|
World Health Organization, Situation ReportZika virus, microcephaly, GuillainBarr syn- drome, 2017. Available from: http://apps.who.int/iris/bitstream/10665/254714/1/ zikasitrep10Mar17-eng.pdf?ua=1.
|
[20]
|
I. I. Bogoch, O. J. Brady, M. U. G. Kraemer, et al., Potential for Zika virus introduction and transmissioninresource-limitedcountriesinAfricaandtheAsia-Pacificregion: amodellingstudy, Lancet Infect. Dis, 16 (2016), 1237–1245.
|
[21]
|
R. Mgling, H. Zeller, J. Revez, et al., ZIKV reference laboratory group and C. Reusken, Status, quality and specific needs of Zika virus (ZIKV) diagnostic capacity and capability in National Reference Laboratories for arboviruses in 30 EU/EEA countries, May 2016, Euro. Surveill., 22 (2017), 30609.
|
[22]
|
J. M. Marshall, S. L. Wu, H. M. Sanchez, et al., Mathematical models of human mobility of relevance to malaria transmission in Africa, Sci. Rep., 8 (2018), 1–12.
|
[23]
|
J. Riou, C. Poletto and P. Y. Bolle, A comparative analysis of Chikungunya and Zika transmission, Epidemics, 19 (2017), 43–52.
|
[24]
|
N. M. Ferguson, Z. M. Cucunub, I. Dorigatti, et al., Countering the Zika epidemic in Latin Amer- ica, Science, 353 (2016), 353–354.
|
[25]
|
K. Sun, Q. Zhang, A. Pastore-Piontti, et al., Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015-2016 ZIKV epidemic, BMC Med., 16 (2018), 195.
|
[26]
|
S. Towers, F. Brauer, C. Castillo-Chavez, et al., Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual trans- mission, Epidemics, 17 (2016), 50–55.
|
[27]
|
Q. Zhang, K. Sun, M. Chinazzi, et al., Spread of Zika virus in the Americas, Proc. Natl. Acad. Sci. USA, 114 (2017), E4334–E4343.
|
[28]
|
L. T. Keegan, J. Lessler and M. A. Johansson, Quantifying Zika: advancing the epidemiology of Zika with quantitative models, J. Infect. Dis., 216 (2017), S884–S890.
|
[29]
|
S. M. Moghadas, A. Shoukat, A. L. Espindola, et al., Asymptomatic transmission and the dynam- ics of Zika infection, Sci. Rep., 7 (2017), 5829.
|
[30]
|
A. Wiratsudakul, P. Suparit and C. Modchang, Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches, Peer. J., 6 (2018), e4526.
|
[31]
|
E. Massad, S. H. Tan, K. Khan, et al., Estimated Zika virus importations to Europe by travellers from Brazil, Glob. Health. Action, 9 (2016), 31669.
|
[32]
|
D. Balcan, B. Gonalves, H. Hu, et al., Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model, J. Comput. Sci., 1 (2010), 132–145.
|
[33]
|
D. Balcan, V. Colizza, B. Goncalves, et al., Multiscale mobility networks and the spatial spreading of infectious diseases, Proc. Natl. Acad. Sci. USA, 106 (2009), 21484–21489.
|
[34]
|
D. Brockmann and D. Helbing, The hidden geometry of complex , network-driven contagion phe- nomena, Science, 342 (2013), 1337–1342.
|
[35]
|
M. R. T. Nunes, G. Palacios, N. R. Faria, et al., Air travel is associated with intracontinental spread of dengue virus serotypes 13 in Brazil, PLoS Negl. Trop. Dis., 8 (2014), e2769.
|
[36]
|
K. Nah, K. Mizumoto, Y. Miyamatsu, et al., Estimating risks of importation and local transmission of Zika virus infection, Peer. J., 4 (2016), e1904.
|
[37]
|
J. Patokallio, Openflights data, 2016. Available from: http://openflights.org/.
|
[38]
|
Central Intelligence Agency, The World Factbook 2017. Available from: https://www.cia. gov/library/publications/the-world-factbook/rankorder/2004rank.html.
|
[39]
|
World Health Organization, Global Health Observatory data repository 2017. Avail- able from: http://data.un.org/Data.aspx?q=Health+expenditure&d=WHO&f=MEASURE_ CODE%3aWHS7_108.
|
[40]
|
S. Otsuki and H. Nishiura, Reduced Risk of Importing Ebola Virus Disease because of Travel Restrictions in 2014: A Retrospective Epidemiological Modeling Study, PLoS One, 11 (2016), e0163418.
|
[41]
|
K. Nah, S. Otsuki, G. Chowell, et al., Predicting the international spread of Middle East respiratory syndrome (MERS), BMC Infect. Dis., 16 (2016), 356.
|
[42]
|
M. N. Burattini, F. A. B. Coutinho, L. F. Lopez, et al., Potential exposure to Zika virus for foreign tourists during the 2016 Carnival and Olympic Games in Rio de Janeiro, Brazil, Epidemiol. Infect., 144 (2016), 1904–1906.
|