Citation: Elvira Barbera, Giancarlo Consolo, Giovanna Valenti. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 451-472. doi: 10.3934/mbe.2015.12.451
[1] | Maoxiang Wang, Fenglan Hu, Meng Xu, Zhipeng Qiu . Keep, break and breakout in food chains with two and three species. Mathematical Biosciences and Engineering, 2021, 18(1): 817-836. doi: 10.3934/mbe.2021043 |
[2] | Mingzhu Qu, Chunrui Zhang, Xingjian Wang . Analysis of dynamic properties on forest restoration-population pressure model. Mathematical Biosciences and Engineering, 2020, 17(4): 3567-3581. doi: 10.3934/mbe.2020201 |
[3] | M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83 |
[4] | Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020 |
[5] | Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41 |
[6] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
[7] | Honghua Bin, Daifeng Duan, Junjie Wei . Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay. Mathematical Biosciences and Engineering, 2023, 20(7): 12194-12210. doi: 10.3934/mbe.2023543 |
[8] | Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis . Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519 |
[9] | Wenzhang Huang . Weakly coupled traveling waves for a model of growth and competition in a flow reactor. Mathematical Biosciences and Engineering, 2006, 3(1): 79-87. doi: 10.3934/mbe.2006.3.79 |
[10] | Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141 |
[1] | Physica D, 90 (1996), 119-153. |
[2] | Mathematical Methods in Applied Sciences, 31 (2008), 481-499. |
[3] | Applied Mathematical Modelling, 34 (2010), 2192-2202. |
[4] | Mathematical Methods in the Applied Sciences, 33 (2010), 1504-1515. |
[5] | Physical Review E, 88 (2013), 052719. |
[6] | Mathematical Models and Methods in Applied Sciences, 12 (2002), 871-901. |
[7] | Journal of Plankton Research, 25 (2003), 121-140. |
[8] | Mathematical Biosciences and Engineering, 4 (2007), 431-456. |
[9] | Applied Mathematics and Computation, 218 (2011), 3387-3398. |
[10] | Ecological Modelling, 151 (2002), 15-28. |
[11] | Far East Journal of Applied Mathematics, 13 (2003), 195-215. |
[12] | in Nonlinear Oscillations in Biology and Chemistry (ed. H.G. Othmer), Lecture Notes in Biomathematics, Berlin, 66 (1986), 274-289. |
[13] | Bulletin of Mathematical Biology, 63 (2001), 1095-1124. |
[14] | Bulletin of Mathematical Biology, 61 (1999), 303-339. |
[15] | Journal of Plankton Research, 22 (2000), 1085-1112. |
[16] | Journal of Plankton Research, 23 (2001), 389-413. |
[17] | Reports on Progress in Physics, 65 (2002), 895-954. |
[18] | Ecological complexity, 3 (2006), 129-139. |
[19] | Proceedings of the National Academy of Sciences USA, 68 (1971), 1686-1688. |
[20] | Theoretical Population Biology, 72 (2007), 1-6. |
[21] | Archive for Rational Mechanics and Analysis, 46 (1972), 131-148. |
[22] | Mathematical and Computer Modelling, 42 (2005), 1035-1048. |
[23] | Dynamics and Stability of Systems, 12 (1997), 39-59. |
[24] | Ecological modelling, 198 (2006), 163-173. |
[25] | Mathematical Biosciences, 215 (2008), 26-34. |
[26] | Springer, New York, 1998. |
[27] | third ed., Springer, Berlin, 2002. |
[28] | Mathematical Methods in the Applied Sciences, 25 (2002), 945-954. |
[29] | The American Naturalist, 117 (1981), 676-691. |
[30] | Journal of Plankton Research, 14 (1992), 157-172. |
[31] | Bulletin of Mathematical Biology, 56 (1994), 981-998. |
[32] | Philosophical Transactions: Physical Sciences and Engineering, Nonlinear Phenomena in Excitable Media, 347 (1994), 703-718. |
[33] | The Mathematical Modelling of Natural Phenomena, 5 (2010), 102-122. |
1. | B. Straughan, Jordan–Cattaneo waves: Analogues of compressible flow, 2020, 98, 01652125, 102637, 10.1016/j.wavemoti.2020.102637 | |
2. | Giancarlo Consolo, Carmela Currò, Giovanna Valenti, Supercritical and subcritical Turing pattern formation in a hyperbolic vegetation model for flat arid environments, 2019, 398, 01672789, 141, 10.1016/j.physd.2019.03.006 | |
3. | Giancarlo Consolo, Carmela Currò, Giovanna Valenti, Turing vegetation patterns in a generalized hyperbolic Klausmeier model, 2020, 43, 0170-4214, 10474, 10.1002/mma.6518 | |
4. | Pietro-Luciano Buono, Raluca Eftimie, Mitchell Kovacic, Lennaert van Veen, 2019, Chapter 2, 978-3-030-20296-5, 39, 10.1007/978-3-030-20297-2_2 | |
5. | S. Savoca, G. Grifó, G. Panarello, M. Albano, S. Giacobbe, G. Capillo, N. Spanó, G. Consolo, Modelling prey-predator interactions in Messina beachrock pools, 2020, 434, 03043800, 109206, 10.1016/j.ecolmodel.2020.109206 | |
6. | Giancarlo Consolo, Carmela Currò, Giovanna Valenti, Pattern formation and modulation in a hyperbolic vegetation model for semiarid environments, 2017, 43, 0307904X, 372, 10.1016/j.apm.2016.11.031 | |
7. | Pietro-Luciano Buono, R. Eftimie, 2016, Chapter 3, 978-3-319-31321-4, 29, 10.1007/978-3-319-31323-8_3 | |
8. | Roberto Zivieri, Nicola Pacini, Is an Entropy-Based Approach Suitable for an Understanding of the Metabolic Pathways of Fermentation and Respiration?, 2017, 19, 1099-4300, 662, 10.3390/e19120662 | |
9. | Sounov Marick, Santu Ghorai, Nandadulal Bairagi, Dynamic characteristics of a hyperbolic reaction–diffusion predator–prey system with self‐diffusion and nonidentical inertia, 2023, 0170-4214, 10.1002/mma.9326 | |
10. | Elvira Barbera, Annamaria Pollino, A hyperbolic reaction–diffusion model of chronic wasting disease, 2023, 0035-5038, 10.1007/s11587-023-00831-8 | |
11. | Santanu Bhattacharya, Santu Ghorai, Nandadulal Bairagi, Dynamic patterns in herding predator–prey system: Analyzing the impact of inertial delays and harvesting, 2024, 34, 1054-1500, 10.1063/5.0239612 |