A SEIR model for control of infectious diseases with constraints

  • Received: 01 April 2013 Accepted: 29 June 2018 Published: 01 March 2014
  • MSC : Primary: 92D30, 49K15; Secondary: 34A34.

  • Optimal control can be of help to test and compare different vaccination strategies of a certain disease.In this paper we propose the introduction ofconstraints involving state variables on an optimal control problem applied to a compartmental SEIR (Susceptible. Exposed, Infectious and Recovered) model. We study the solution of such problems when mixed state control constraints are used to impose upper bounds on the available vaccines at each instant of time. We also explore the possibility of imposing upper bounds on the number of susceptible individuals with and without limitations on the number of vaccines available. In the case of mere mixed constraints a numerical and analytical study is conducted while in the other two situations only numerical results are presented.

    Citation: M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 761-784. doi: 10.3934/mbe.2014.11.761

    Related Papers:

    [1] Markus Thäter, Kurt Chudej, Hans Josef Pesch . Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences and Engineering, 2018, 15(2): 485-505. doi: 10.3934/mbe.2018022
    [2] Maria do Rosário de Pinho, Filipa Nunes Nogueira . On application of optimal control to SEIR normalized models: Pros and cons. Mathematical Biosciences and Engineering, 2017, 14(1): 111-126. doi: 10.3934/mbe.2017008
    [3] Loïc Michel, Cristiana J. Silva, Delfim F. M. Torres . Model-free based control of a HIV/AIDS prevention model. Mathematical Biosciences and Engineering, 2022, 19(1): 759-774. doi: 10.3934/mbe.2022034
    [4] Craig Collins, K. Renee Fister, Bethany Key, Mary Williams . Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 451-467. doi: 10.3934/mbe.2009.6.451
    [5] Peter Rashkov . Modeling repellent-based interventions for control of vector-borne diseases with constraints on extent and duration. Mathematical Biosciences and Engineering, 2022, 19(4): 4038-4061. doi: 10.3934/mbe.2022185
    [6] Yuhang Yao, Jiaxin Yuan, Tao Chen, Xiaole Yang, Hui Yang . Distributed convex optimization of bipartite containment control for high-order nonlinear uncertain multi-agent systems with state constraints. Mathematical Biosciences and Engineering, 2023, 20(9): 17296-17323. doi: 10.3934/mbe.2023770
    [7] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [8] Haoyu Wang, Xihe Qiu, Jinghan Yang, Qiong Li, Xiaoyu Tan, Jingjing Huang . Neural-SEIR: A flexible data-driven framework for precise prediction of epidemic disease. Mathematical Biosciences and Engineering, 2023, 20(9): 16807-16823. doi: 10.3934/mbe.2023749
    [9] Agustín Gabriel Yabo, Jean-Baptiste Caillau, Jean-Luc Gouzé . Optimal bacterial resource allocation: metabolite production in continuous bioreactors. Mathematical Biosciences and Engineering, 2020, 17(6): 7074-7100. doi: 10.3934/mbe.2020364
    [10] Bruno Buonomo . A simple analysis of vaccination strategies for rubella. Mathematical Biosciences and Engineering, 2011, 8(3): 677-687. doi: 10.3934/mbe.2011.8.677
  • Optimal control can be of help to test and compare different vaccination strategies of a certain disease.In this paper we propose the introduction ofconstraints involving state variables on an optimal control problem applied to a compartmental SEIR (Susceptible. Exposed, Infectious and Recovered) model. We study the solution of such problems when mixed state control constraints are used to impose upper bounds on the available vaccines at each instant of time. We also explore the possibility of imposing upper bounds on the number of susceptible individuals with and without limitations on the number of vaccines available. In the case of mere mixed constraints a numerical and analytical study is conducted while in the other two situations only numerical results are presented.


    [1] Springer-Verlag. New York, 2001.
    [2] John Wiley, New York, 1983.
    [3] Springer-Verlag, London, 2013.
    [4] SIAM J. Control Optim., 48, (2010), 4500-4524.
    [5] Nonlinear Analysis, 63 (2005), e2591-e2602.
    [6] Set-Valued and Variational Analysis, 17 (2009), 203-2219.
    [7] MdR de Pinho,Hacet. J. Math. Stat., 40 (2011), 287-295.
    [8] Department of Electrical and Electronic Engineering, Imperial College London, London, England, UK, 2010.
    [9] SIAM Review, 37 (1995), 181-218.
    [10] $2^{nd}$ Edition (405 pages), John Wiley, New York, 1980.
    [11] In Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), Vol. 16. Chap. 1, pp. 1-61, World Scientific Publishing Co. Pte. Ltd., Singapore, 2008.
    [12] Bulletin of Mathematical Biology, 53 (1991), 35-55.
    [13] J. Optim. Theory Appl., 86 (1995), 649-667.
    [14] SIAM J. Control Optm., 41 (2002), 380-403.
    [15] SIAM Advances in Design and Control, 24, 2012.
    [16] Optim. Control Appl. Meth., 32 (2011), 181-184.
    [17] DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.
    [18] Project Report, 2013, http://paginas.fe.up.pt/~faf/ProjectFCT2009/report.pdf.
    [19] Mathematical Biosciences and Engineering, 8 (2011), 141-170.
    [20] Journal of Applied Mathematics, 2012 (2012), 1-20.
    [21] Springer, New York, 2012.
    [22] Applied Mathematical Modelling, 34 (2010), 2685-2697.
    [23] Birkhäuser, Boston, 2000.
    [24] Mathematical Programming, 106 (2006), 25-57.
  • This article has been cited by:

    1. Fulian Yin, Xueying Shao, Meiqi Ji, Jianhong Wu, Quantifying the Influence of Delay in Opinion Transmission of COVID-19 Information Propagation: Modeling Study, 2021, 23, 1438-8871, e25734, 10.2196/25734
    2. Calvin Tsay, Fernando Lejarza, Mark A. Stadtherr, Michael Baldea, Modeling, state estimation, and optimal control for the US COVID-19 outbreak, 2020, 10, 2045-2322, 10.1038/s41598-020-67459-8
    3. Vicente Javier Clemente-Suárez, Alberto Hormeño-Holgado, Manuel Jiménez, Juan Camilo Benitez-Agudelo, Eduardo Navarro-Jiménez, Natalia Perez-Palencia, Ronald Maestre-Serrano, Carmen Cecilia Laborde-Cárdenas, Jose Francisco Tornero-Aguilera, Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic, 2020, 8, 2076-393X, 236, 10.3390/vaccines8020236
    4. A. Harir, S. Melliani, H. El Harfi, L. S. Chadli, Variational Iteration Method and Differential Transformation Method for Solving the SEIR Epidemic Model, 2020, 2020, 1687-9643, 1, 10.1155/2020/3521936
    5. S.R. Niakan Kalhori, M. Ghazisaeedi, R. Azizi, A. Naserpour, Studying the influence of mass media and environmental factors on influenza virus transmission in the US Midwest, 2019, 170, 00333506, 17, 10.1016/j.puhe.2019.02.006
    6. Ingo Bulla, Ian H. Spickanll, Dmitry Gromov, Ethan Obie Romero-Severson, Geng-Feng Fu, Sensitivity of joint contagiousness and susceptibility-based dynamic optimal control strategies for HIV prevention, 2018, 13, 1932-6203, e0204741, 10.1371/journal.pone.0204741
    7. Md. Haider Ali Biswas, Md. Mohidul Haque, Uzzwal Kumar Mallick, Optimal control strategy for the immunotherapeutic treatment of HIV infection with state constraint, 2019, 40, 0143-2087, 807, 10.1002/oca.2516
    8. Maria do Rosário de Pinho, Filipa Nunes Nogueira, Costs analysis for the application of optimal control to SEIR normalized models, 2018, 51, 24058963, 122, 10.1016/j.ifacol.2018.11.656
    9. Saikat Batabyal, Arthita Batabyal, Mathematical computations on epidemiology: a case study of the novel coronavirus (SARS-CoV-2), 2021, 1431-7613, 10.1007/s12064-021-00339-5
    10. J. Almeida, L.T. Paiva, T. Mendonca, P. Rocha, 2015, An optimal control approach to reference level tracking in general anesthesia, 978-1-4799-9936-1, 124, 10.1109/MED.2015.7158739
    11. Cristiana J. Silva, Delfim F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, 2015, 35, 1553-5231, 4639, 10.3934/dcds.2015.35.4639
    12. Md. Haider Ali Biswas, Md. Mohidul Haque, Gomanth Duvvuru, 2015, A mathematical model for understanding the spread of nipah fever epidemic in Bangladesh, 978-1-4799-6065-1, 1, 10.1109/IEOM.2015.7093861
    13. Lilian S. Sepulveda, Olga Vasilieva, Optimal control approach to dengue reduction and prevention in Cali, Colombia, 2016, 39, 01704214, 5475, 10.1002/mma.3932
    14. Tingzhen Liu, Tong Zhou, Jin Gao, Wei Li, Yimin Ma, 2020, Autocorrelation Sequence Prediction Model Based On Reference Function Transformation: Taking Epidemic Prediction As An Example, 978-1-7281-7687-1, 1599, 10.1109/CAC51589.2020.9327602
    15. Mst. Shanta Khatun, Md. Haider Ali Biswas, Optimal control strategies for preventing hepatitis B infection and reducing chronic liver cirrhosis incidence, 2020, 5, 24680427, 91, 10.1016/j.idm.2019.12.006
    16. Manuel De la Sen, Asier Ibeas, Raul Nistal, Ya Jia, About Partial Reachability Issues in an SEIR Epidemic Model and Related Infectious Disease Tracking in Finite Time under Vaccination and Treatment Controls, 2021, 2021, 1607-887X, 1, 10.1155/2021/5556897
    17. Cristiana J. Silva, Delfim F. M. Torres, Modeling and optimal control of HIV/AIDS prevention through PrEP, 2018, 11, 1937-1179, 119, 10.3934/dcdss.2018008
    18. Md. Haider Ali Biswas, Md Rajib Hossain, Mitun Kumar Mondal, Mathematical Modeling Applied to Sustainable Management of Marine Resources, 2017, 194, 18777058, 337, 10.1016/j.proeng.2017.08.154
    19. Su Jiafu, Zhang Xuefeng, Yang Jiaquan, Qian Xiaoduo, Modelling and simulating knowledge diffusion in knowledge collaboration organisations using improved cellular automata, 2019, 13, 1747-7778, 181, 10.1080/17477778.2018.1508937
    20. IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres, Ebola model and optimal control with vaccination constraints, 2018, 14, 1553-166X, 427, 10.3934/jimo.2017054
    21. Lennon Ó Náraigh, Áine Byrne, Piecewise-constant optimal control strategies for controlling the outbreak of COVID-19 in the Irish population, 2020, 330, 00255564, 108496, 10.1016/j.mbs.2020.108496
    22. Swati Tyagi, Subash C. Martha, Syed Abbas, Amar Debbouche, Mathematical modeling and analysis for controlling the spread of infectious diseases, 2021, 144, 09600779, 110707, 10.1016/j.chaos.2021.110707
    23. Xinwei Wang, Jie Liu, Xianzhou Dong, Chongwei Li, Yong Zhang, A symplectic pseudospectral method for constrained time-delayed optimal control problems and its application to biological control problems, 2020, 0233-1934, 1, 10.1080/02331934.2020.1786568
    24. Luís Tiago Paiva, Fernando A. C. C. Fontes, Adaptive time--mesh refinement in optimal control problems with state constraints, 2015, 35, 1553-5231, 4553, 10.3934/dcds.2015.35.4553
    25. Zulfany Erlisa Rasjid, Reina Setiawan, Andy Effendi, A Comparison: Prediction of Death and Infected COVID-19 Cases in Indonesia Using Time Series Smoothing and LSTM Neural Network, 2021, 179, 18770509, 982, 10.1016/j.procs.2021.01.102
    26. Mst. Shanta Khatun, Md. Haider Ali Biswas, Modeling the effect of adoptive T cell therapy for the treatment of leukemia, 2020, 2, 2577-7408, 10.1002/cmm4.1069
    27. Uzzwal Kumar Mallick, Md. Haider Ali Biswas, 2017, Optimal control strategies applied to reduce the unemployed population, 978-1-5386-2175-2, 408, 10.1109/R10-HTC.2017.8288986
    28. Badreddine Benreguia, Hamouma Moumen, Mohammed Amine Merzoug, Tracking COVID-19 by Tracking Infectious Trajectories, 2020, 8, 2169-3536, 145242, 10.1109/ACCESS.2020.3015002
    29. Seyma Arslan, Muhammed Yusuf Ozdemir, Abdullah Ucar, Nowcasting and Forecasting the Spread of COVID-19 and Healthcare Demand in Turkey, a Modeling Study, 2021, 8, 2296-2565, 10.3389/fpubh.2020.575145
    30. Sontosh Kumar Sahani, M. Haider Ali Biswas, Mathematical Modeling Applied to Understand the Dynamical Behavior of HIV Infection, 2017, 05, 2327-4018, 145, 10.4236/ojmsi.2017.52010
    31. Yuda Wang, Gang Li, The Spreading of Information in Online Social Networks through Cellular Automata, 2018, 2018, 1076-2787, 1, 10.1155/2018/1890643
    32. Sanjay Kumar, Muskan Saini, Muskan Goel, B. S. Panda, Modeling information diffusion in online social networks using a modified forest-fire model, 2021, 56, 0925-9902, 355, 10.1007/s10844-020-00623-8
    33. Mst. Shanta Khatun, Md. Haider Ali Biswas, Mathematical analysis and optimal control applied to the treatment of leukemia, 2020, 64, 1598-5865, 331, 10.1007/s12190-020-01357-0
    34. Zhenghui Li, Yuzhi Xiao, Haixiu Luo, Chunyang Tang, 2021, Chapter 6, 978-3-030-68736-6, 90, 10.1007/978-3-030-68737-3_6
    35. Nidhal ben Khedher, Lioua Kolsi, Haitham Alsaif, A multi-stage SEIR model to predict the potential of a new COVID-19 wave in KSA after lifting all travel restrictions, 2021, 60, 11100168, 3965, 10.1016/j.aej.2021.02.058
    36. Yusheng Zhang, Liang Li, Yuewen Jiang, Biqing Huang, Analysis of COVID-19 Prevention and Control Effects Based on the SEITRD Dynamic Model and Wuhan Epidemic Statistics, 2020, 17, 1660-4601, 9309, 10.3390/ijerph17249309
    37. Markus Thäter, Kurt Chudej, Hans Josef Pesch, Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth, 2017, 15, 1551-0018, 485, 10.3934/mbe.2018022
    38. Maria do Rosário de Pinho, Filipa Nunes Nogueira, On application of optimal control to SEIR normalized models: Pros and cons, 2017, 14, 1551-0018, 111, 10.3934/mbe.2017008
    39. Maria do Rosário de Pinho, Igor Kornienko, Helmut Maurer, 2015, Chapter 14, 978-3-319-10379-2, 135, 10.1007/978-3-319-10380-8_14
    40. Xinwei Wang, Haijun Peng, Boyang Shi, Dianheng Jiang, Sheng Zhang, Biaosong Chen, Optimal vaccination strategy of a constrained time-varying SEIR epidemic model, 2019, 67, 10075704, 37, 10.1016/j.cnsns.2018.07.003
    41. Kai Zhang, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Yong Ye, Hua Liu, Sensitivity analysis and optimal treatment control for a mathematical model of Human Papillomavirus infection, 2020, 5, 2473-6988, 2646, 10.3934/math.2020172
    42. Gustavo Barbosa Libotte, Fran Sérgio Lobato, Gustavo Mendes Platt, Antônio J. Silva Neto, Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment, 2020, 196, 01692607, 105664, 10.1016/j.cmpb.2020.105664
    43. Jindong Dai, Chi Zhai, Jiali Ai, Jiaying Ma, Jingde Wang, Wei Sun, Modeling the Spread of Epidemics Based on Cellular Automata, 2020, 9, 2227-9717, 55, 10.3390/pr9010055
    44. Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani, Optimal control of normalized SIMR models with vaccination and treatment, 2018, 23, 1553-524X, 79, 10.3934/dcdsb.2018006
    45. Md. Haider Ali Biswas, Md. Mohidul Haque, 2016, Chapter 15, 978-3-319-32855-3, 149, 10.1007/978-3-319-32857-7_15
    46. Sunil Kumar, Ranbir Kumar, M. S. Osman, Bessem Samet, A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials , 2021, 37, 0749-159X, 1250, 10.1002/num.22577
    47. Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov, Optimal Control for an SEIR Epidemic Model with Nonlinear Incidence Rate, 2018, 141, 00222526, 353, 10.1111/sapm.12227
    48. Saikat Batabyal, COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission, 2021, 145, 09600779, 110772, 10.1016/j.chaos.2021.110772
    49. Ognyan Kounchev, Georgi Simeonov, Zhana Kuncheva, How Long 'Lockdowns' Are Needed to End the COVID-19 Epidemic in a Single Country, with or without Vaccinations, 2021, 1556-5068, 10.2139/ssrn.3766521
    50. Malen Etxeberria-Etxaniz, Santiago Alonso-Quesada, Manuel De la Sen, On an SEIR Epidemic Model with Vaccination of Newborns and Periodic Impulsive Vaccination with Eventual On-Line Adapted Vaccination Strategies to the Varying Levels of the Susceptible Subpopulation, 2020, 10, 2076-3417, 8296, 10.3390/app10228296
    51. Virender Singh Panwar, P.S. Sheik Uduman, J.F. Gómez-Aguilar, Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives, 2021, 145, 09600779, 110757, 10.1016/j.chaos.2021.110757
    52. Emilene Pliego-Pliego, Olga Vasilieva, Jorge Velázquez-Castro, Andrés Fraguela Collar, Control strategies for a population dynamics model of Aedes aegypti with seasonal variability and their effects on dengue incidence, 2020, 81, 0307904X, 296, 10.1016/j.apm.2019.12.025
    53. Mario Moisés Alvarez, Everardo González-González, Grissel Trujillo-de Santiago, Modeling COVID-19 epidemics in an Excel spreadsheet to enable first-hand accurate predictions of the pandemic evolution in urban areas, 2021, 11, 2045-2322, 10.1038/s41598-021-83697-w
    54. Alessandro J.Q. Sarnaglia, Bartolomeu Zamprogno, Fabio A. Fajardo Molinares, Luciana G. de Godoi, Nátaly A. Jiménez Monroy, Correcting notification delay and forecasting of COVID-19 data, 2021, 0022247X, 125202, 10.1016/j.jmaa.2021.125202
    55. M. H. A. Biswas, A. K. Paul, M. S. Khatun, S. Mandal, S. Akter, M. A. Islam, M. R. Khatun, S. A. Samad, 2021, Chapter 3, 978-981-33-6263-5, 39, 10.1007/978-981-33-6264-2_3
    56. Lin Zhang, Kan Li, Jiamou Liu, An Information Diffusion Model Based on Explosion Shock Wave Theory on Online Social Networks, 2021, 11, 2076-3417, 9996, 10.3390/app11219996
    57. Siti Solehah Bakar, Noorhelyna Razali, 2023, Chapter 36, 978-94-6463-013-8, 411, 10.2991/978-94-6463-014-5_36
    58. Rocío Balderrama, Javier Peressutti, Juan Pablo Pinasco, Federico Vazquez, Constanza Sánchez de la Vega, Optimal control for a SIR epidemic model with limited quarantine, 2022, 12, 2045-2322, 10.1038/s41598-022-16619-z
    59. Péter Polcz, Balázs Csutak, Gábor Szederkényi, Reconstruction of Epidemiological Data in Hungary Using Stochastic Model Predictive Control, 2022, 12, 2076-3417, 1113, 10.3390/app12031113
    60. Alberto Olivares, Ernesto Staffetti, Robust optimal control of compartmental models in epidemiology: Application to the COVID-19 pandemic, 2022, 111, 10075704, 106509, 10.1016/j.cnsns.2022.106509
    61. Anwer S. Aljuboury, Firas Abedi, Hanan M. Shukur, Zahraa Sabah Hashim, Ibraheem Kasim Ibraheem, Ahmed Alkhayyat, Laxmi Lydia, Mathematical Modeling and Control of COVID-19 Using Super Twisting Sliding Mode and Nonlinear Techniques, 2022, 2022, 1687-5273, 1, 10.1155/2022/8539278
    62. A. M. Jothi, A. Charumathi, A. Yuvarani, R. Parvathi, 2022, Chapter 9, 978-981-16-5639-2, 103, 10.1007/978-981-16-5640-8_9
    63. Hennie Husniah, Ruhanda Ruhanda, Asep K. Supriatna, Md. H. A. Biswas, SEIR Mathematical Model of Convalescent Plasma Transfusion to Reduce COVID-19 Disease Transmission, 2021, 9, 2227-7390, 2857, 10.3390/math9222857
    64. Nagasaikiran Karra, Rohan Lekhwani, Bhupendra Singh, Tanmoy Hazra, 2022, Modeling and Predicting the COVID-19 Trajectory in India, 978-1-6654-2168-3, 1, 10.1109/I2CT54291.2022.9825301
    65. Alberto Olivares, Ernesto Staffetti, Optimal control-based vaccination and testing strategies for COVID-19, 2021, 211, 01692607, 106411, 10.1016/j.cmpb.2021.106411
    66. Tahera Parvin, Md. Haider Ali Biswas, Bimal Kumar Datta, Anum Shafiq, Mathematical Analysis of the Transmission Dynamics of Skin Cancer Caused by UV Radiation, 2022, 2022, 1687-0042, 1, 10.1155/2022/5445281
    67. 2022, chapter 5, 9781799883432, 96, 10.4018/978-1-7998-8343-2.ch005
    68. Bowen Du, Zirong Zhao, Jiejie Zhao, Le Yu, Leilei Sun, Weifeng Lv, Modelling the epidemic dynamics of COVID-19 with consideration of human mobility, 2021, 12, 2364-415X, 369, 10.1007/s41060-021-00271-3
    69. Yixing Wang, Hainan Xiong, Sijie Liu, Ara Jung, Trish Stone, Leanne Chukoskie, Simulation Agent-Based Model to Demonstrate the Transmission of COVID-19 and Effectiveness of Different Public Health Strategies, 2021, 3, 2624-9898, 10.3389/fcomp.2021.642321
    70. Sh. Gong, V. V. Tatarinov, 2022, 2470, 0094-243X, 070009, 10.1063/5.0074524
    71. R. Salazar-Peña, M.A. Pedroza-Toscano, S. López-Cuenca, M.A. Zárate-Navarro, Project-based learning for an online course of simulation engineering: From bioreactor to epidemiological modeling, 2023, 42, 17497728, 68, 10.1016/j.ece.2022.12.002
    72. Yichao Zhou, Jyun-Yu Jiang, Xiusi Chen, Wei Wang, 2021, #StayHome or #Marathon?, 9781450384469, 2738, 10.1145/3459637.3482222
    73. Gavrila A. Puspitarani, Rowland R. Kao, Ewan Colman, A Metapopulation Model for Preventing the Reintroduction of Bovine Viral Diarrhea Virus to Naïve Herds: Scotland Case Study, 2022, 9, 2297-1769, 10.3389/fvets.2022.846156
    74. Valeriya Lykina, Sabine Pickenhain, Katharina Kolo, Dieter Grass, Sustainability and long-term strategies in the modeling of biological processes, 2022, 55, 24058963, 665, 10.1016/j.ifacol.2022.09.172
    75. V. S. V. Naga Soundarya Lakshmi, A. Sabarmathi, 2023, Chapter 24, 978-981-19-1928-2, 273, 10.1007/978-981-19-1929-9_24
    76. D. Ghosh, P. K. Santra, G. S. Mahapatra, Amr Elsonbaty, A. A. Elsadany, A discrete-time epidemic model for the analysis of transmission of COVID19 based upon data of epidemiological parameters, 2022, 231, 1951-6355, 3461, 10.1140/epjs/s11734-022-00537-2
    77. Jyun-Yu Jiang, Yichao Zhou, Xiusi Chen, Yan-Ru Jhou, Liqi Zhao, Sabrina Liu, Po-Chun Yang, Jule Ahmar, Wei Wang, COVID-19 Surveiller: toward a robust and effective pandemic surveillance system based on social media mining, 2022, 380, 1364-503X, 10.1098/rsta.2021.0125
    78. Dongya Liu, Xinqi Zheng, Lei Zhang, Simulation of Spatiotemporal Relationship between COVID-19 Propagation and Regional Economic Development in China, 2021, 10, 2073-445X, 599, 10.3390/land10060599
    79. Thomas K. Torku, Abdul Q. M. Khaliq, Khaled M. Furati, Deep-Data-Driven Neural Networks for COVID-19 Vaccine Efficacy, 2021, 2, 2673-3986, 564, 10.3390/epidemiologia2040039
    80. Lihong Sun, Qiang He, Yueyang Teng, Qi Zhao, Xin Yan, Xingwei Wang, A complex network-based vaccination strategy for infectious diseases, 2023, 136, 15684946, 110081, 10.1016/j.asoc.2023.110081
    81. Arash Sioofy Khoojine, Mojtaba Mahsuli, Mahdi Shadabfar, Vahid Reza Hosseini, Hadi Kordestani, A proposed fractional dynamic system and Monte Carlo-based back analysis for simulating the spreading profile of COVID-19, 2022, 231, 1951-6355, 3427, 10.1140/epjs/s11734-022-00538-1
    82. Paul Chong, Byung-Jun Yoon, Debbie Lai, Michael Carlson, Jarone Lee, Shuhan He, Looking back on forward-looking COVID models, 2022, 3, 26663899, 100492, 10.1016/j.patter.2022.100492
    83. Lahoucine Boujallal, Mohamed Elhia, Set-Valued Control to COVID-19 Spread with Treatment and Limitation of Vaccination Resources, 2022, 46, 1028-6276, 829, 10.1007/s40995-022-01295-5
    84. Alberto Olivares, Ernesto Staffetti, Optimal Control Applied to Vaccination and Testing Policies for COVID-19, 2021, 9, 2227-7390, 3100, 10.3390/math9233100
    85. A. Haj Ismail, E.A. Dawi, T. Jwaid, Saleh T. Mahmoud, A. AbdelKader, Simulation of the evolution of the Covid-19 pandemic in the United Arab Emirates using the sir epidemical model, 2021, 28, 2576-5299, 128, 10.1080/25765299.2021.1890900
    86. Othman A.M. Omar, Yousef Alnafisah, Reda A. Elbarkouky, Hamdy M. Ahmed, COVID-19 deterministic and stochastic modelling with optimized daily vaccinations in Saudi Arabia, 2021, 28, 22113797, 104629, 10.1016/j.rinp.2021.104629
    87. Rishal Amar Singh, Rajnesh Lal, Ramanuja Rao Kotti, Time-discrete SIR model for COVID-19 in Fiji, 2022, 150, 0950-2688, 10.1017/S0950268822000590
    88. Wen Zhang, Rui Xie, Xuefan Dong, Jian Li, Peng Peng, Ernesto DR Santibanez Gonzalez, SEIR-FMi: A coronavirus disease epidemiological model based on intra-city movement, inter-city movement and medical resource investment, 2022, 149, 00104825, 106046, 10.1016/j.compbiomed.2022.106046
    89. Abhishek Dutta, 2020, Stabilizing COVID-19 Infections in US by Feedback Control based Test and Quarantine, 978-1-7281-7388-7, 1, 10.1109/GHTC46280.2020.9342623
    90. Kalyan Das, B.S.N. Murthy, Sk. Abdus Samad, Md. Haider Ali Biswas, Mathematical transmission analysis of SEIR tuberculosis disease model, 2021, 2, 26663511, 100120, 10.1016/j.sintl.2021.100120
    91. Hafida Laib, Azzeddine Bellour, Aissa Boulmerka, Taylor collocation method for a system of nonlinear Volterra delay integro-differential equations with application to COVID-19 epidemic, 2022, 99, 0020-7160, 852, 10.1080/00207160.2021.1938012
    92. Raghu Arghal, Shirin Saeedi Bidokhti, Saswati Sarkar, 2022, Optimal Capacity-Constrained COVID-19 Vaccination for Heterogeneous Populations, 978-1-6654-6761-2, 5620, 10.1109/CDC51059.2022.9992682
    93. Sacrifice Nana-Kyere, Francis Agyei Boateng, Paddy Jonathan, Anthony Donkor, Glory Kofi Hoggar, Banon Desmond Titus, Daniel Kwarteng, Isaac Kwasi Adu, Andrei Korobeinikov, Global Analysis and Optimal Control Model of COVID-19, 2022, 2022, 1748-6718, 1, 10.1155/2022/9491847
    94. Y.M. Rangkuti, A. Landong, Control optimal analysis of SEIR model of covid 19 spread in Indonesia, 2022, 2193, 1742-6588, 012091, 10.1088/1742-6596/2193/1/012091
    95. Ali Faghani, M. Courtney Hughes, Mahdi Vaezi, Association of Anti-Contagion Policies with the Spread of Covid-19 in United States, 2022, 11, 2279-9036, jphr.2022.2748, 10.4081/jphr.2022.2748
    96. Setianto Setianto, Darmawan Hidayat, Modeling the time-dependent transmission rate using gaussian pulses for analyzing the COVID-19 outbreaks in the world, 2023, 13, 2045-2322, 10.1038/s41598-023-31714-5
    97. Alfredo Braunstein, Giovanni Catania, Luca Dall’Asta, Matteo Mariani, Anna Paola Muntoni, Inference in conditioned dynamics through causality restoration, 2023, 13, 2045-2322, 10.1038/s41598-023-33770-3
    98. Ahmed El Aferni, Moez Guettari, Abdelkader Hamdouni, COVID-19 multiwaves as multiphase percolation: a general N-sigmoidal equation to model the spread, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04014-0
    99. Luca Serena, Moreno Marzolla, Gabriele D’Angelo, Stefano Ferretti, A review of multilevel modeling and simulation for human mobility and behavior, 2023, 1569190X, 102780, 10.1016/j.simpat.2023.102780
    100. Kiattisak Prathom, Asama Jampeepan, Renier Mendoza, Direct numerical solutions of the SIR and SEIR models via the Dirichlet series approach, 2023, 18, 1932-6203, e0287556, 10.1371/journal.pone.0287556
    101. Maximilian Karthan, Daniel Hieber, Annika Kreuder, Ulrich Frick, Rüdiger Pryss, Johannes Schobel, 2023, Concept and Requirements for an Educational Serious Game Teaching Pandemic Management, 979-8-3503-1224-9, 153, 10.1109/CBMS58004.2023.00208
    102. Zhuohang Qin, Sibei Li, Hao Qi, Siyuan Liu, Guoqing Meng, Mengling Luo, Xuebin Chen, Hari Mohan Srivastava, 2023, Analyze and solve the network public opinion communication based on the improved SEIR model, 9781510667600, 52, 10.1117/12.2685942
    103. XinJie Zhu, Hua Liu, XiaoTao Han, XiaoFen Lin, Xuebin Chen, Hari Mohan Srivastava, 2023, Stability analysis and optimal control of an infectious disease model considering vaccination, 9781510667600, 94, 10.1117/12.2686007
    104. Wenping Chen, Fanqing Meng, Xuebin Chen, Hari Mohan Srivastava, 2023, Analyze the impact of control measures on COVID-19 transmission based on SEIR model, 9781510667600, 159, 10.1117/12.2686154
    105. Azhar Iqbal Kashif Butt, Waheed Ahmad, Muhammad Rafiq, Naeed Ahmad, Muhammad Imran, Computationally efficient optimal control analysis for the mathematical model of Coronavirus pandemic, 2023, 234, 09574174, 121094, 10.1016/j.eswa.2023.121094
    106. Haoyu Geng, Guanjie Zheng, Zhengqing Han, Hua Wei, Zhenhui Li, 2022, HMES: A Scalable Human Mobility and Epidemic Simulation System with Fast Intervention Modeling, 979-8-3503-4655-8, 468, 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00085
    107. Uzzwal Kumar Mallick, Md. Haider Ali Biswas, Wei-Chiang Hong, Mathematical Modeling for Optimal Management of Human Resources in Banking Sector of Bangladesh, 2023, 2023, 1687-0042, 1, 10.1155/2023/1321365
    108. Balázs Csutak, Koppány Marcell Jenei, Gábor Szederkényi, 2023, Linearization based robust reference tracking control of a compartmental epidemiological model, 979-8-3503-4763-0, 66, 10.1109/PC58330.2023.10217568
    109. Asma Khalil Alkhamis, Manar Hosny, A Multi-Objective Simulated Annealing Local Search Algorithm in Memetic CENSGA: Application to Vaccination Allocation for Influenza, 2023, 15, 2071-1050, 15347, 10.3390/su152115347
    110. Ali Serdar NAZLIPINAR, Farıdeh MOHAMMADIMEHR, ATTAINABLE SETS OF INTEGRAL CONSTRAINED SEIR CONTROL SYSTEM WITH NONLINEAR INCIDENCE, 2023, 2687-6167, 322, 10.59313/jsr-a.1312173
    111. Xinjie Zhu, Hua Liu, Xiaofen Lin, Qibin Zhang, Yumei Wei, Global stability and optimal vaccination control of SVIR models, 2024, 9, 2473-6988, 3453, 10.3934/math.2024170
    112. Zulqurnain Sabir, Salem Ben Said, Qasem Al-Mdallal, An artificial neural network approach for the language learning model, 2023, 13, 2045-2322, 10.1038/s41598-023-50219-9
    113. Yasir Nadeem Anjam, Iqra Shahid, Homan Emadifar, Salman Arif Cheema, Mati ur Rahman, Dynamics of the optimality control of transmission of infectious disease: a sensitivity analysis, 2024, 14, 2045-2322, 10.1038/s41598-024-51540-7
    114. Muhammad Sajid Riaz, Maria Shaukat, Tabish Saeed, Aneeqa Ijaz, Haneya Naeem Qureshi, Iryna Posokhova, Ismail Sadiq, Ali Rizwan, Ali Imran, iPREDICT: AI enabled proactive pandemic prediction using biosensing wearable devices, 2024, 46, 23529148, 101478, 10.1016/j.imu.2024.101478
    115. V. Suganya, S. Padmasekaran, S. Dickson, Stability analysis of a dynamic cancer mathematical model with the impact of smoking and alcohol consumption, 2024, 30, 1405-213X, 10.1007/s40590-024-00599-3
    116. Jianhong Mou, Bitao Dai, Suoyi Tan, Petter Holme, Sune Lehmann, Fredrik Liljeros, Xin Lu, The spindle approximation of network epidemiological modeling, 2024, 26, 1367-2630, 043027, 10.1088/1367-2630/ad4050
    117. Fulgence Mansal, Mouhamadou A. M. T. Baldé, Alpha O. Bah, 2024, Chapter 4, 978-3-031-52680-0, 101, 10.1007/978-3-031-52681-7_4
    118. M. Soledad Aronna, Lucas Machado Moschen, Optimal vaccination strategies on networks and in metropolitan areas, 2024, 24680427, 10.1016/j.idm.2024.06.007
    119. Young Rock Kim, Youngho Min, Joy Nana Okogun-Odompley, Rehana Naz, A mathematical model of COVID-19 with multiple variants of the virus under optimal control in Ghana, 2024, 19, 1932-6203, e0303791, 10.1371/journal.pone.0303791
    120. Xianli Sun, Youguo Wang, Yun Chai, Yan Liu, Dynamic analysis and control strategies of the SEIHR rumor diffusion model in online social networks, 2024, 134, 0307904X, 611, 10.1016/j.apm.2024.06.005
    121. Elisa Paparelli, Roberto Giambó, Helmut Maurer, Optimal control of an epidemiological Covid-19 model with state constraint, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024095
    122. Indrazno Siradjuddin, Bella Cahya Ningrum, Inta Nurkhaliza Agiska, Arwin Datumaya Wahyudi Sumari, Yan Watequlis Syaifudin, Rosa Andrie Asmara, Nobuo Funabiki, 2024, 3132, 0094-243X, 050020, 10.1063/5.0201201
    123. Enrique C. Gabrick, Eduardo L. Brugnago, Ana L. R. de Moraes, Paulo R. Protachevicz, Sidney T. da Silva, Fernando S. Borges, Iberê L. Caldas, Antonio M. Batista, Jürgen Kurths, Control, bi-stability, and preference for chaos in time-dependent vaccination campaign, 2024, 34, 1054-1500, 10.1063/5.0221150
    124. Yang Liu, Kashin Sugishita, Shinya Hanaoka, Vaccination and transportation intervention strategies for effective pandemic control, 2024, 156, 0967070X, 126, 10.1016/j.tranpol.2024.07.021
    125. P. K. Fathima Nida, P. C. Vismaya Vinod, Devika S. Anand, M. Nishana Jasmin, P. N. Bajeel, 2024, 3242, 0094-243X, 020014, 10.1063/5.0234832
    126. Md Abdul Kuddus, M. Mohiuddin, Anip Kumar Paul, Azizur Rahman, Oluwole Daniel Makinde, Insights from qualitative and bifurcation analysis of COVID-19 vaccination model in Bangladesh, 2024, 19, 1932-6203, e0312780, 10.1371/journal.pone.0312780
    127. Denekew Bitew Belay, Ding-Geng Chen, Sintayehu Agegnehu Matintu, 2024, Chapter 8, 978-3-031-69689-3, 193, 10.1007/978-3-031-69690-9_8
    128. Jiacheng Chen, Kexin Feng, Lorenzo Freddi, Dan Goreac, Juan Li, Optimality of Vaccination for Prevalence-Constrained SIRS Epidemics, 2025, 91, 0095-4616, 10.1007/s00245-024-10212-8
    129. Zulqurnain Sabir, Samir Khansa, Ghida Baltaji, Tareq Saeed, A Bayesian regularization neural network procedure to solve the language learning system, 2025, 310, 09507051, 112997, 10.1016/j.knosys.2025.112997
    130. Pandula Thennakoon, Ravindu Rodrigo, Kalana Jayasooriya, Thiksiga Ragulakaran, Roshan Godaliyadda, Vijitha Herath, Mervyn Parakrama Ekanayake, Janaka Ekanayake, 2024, Unveiling Motion Patterns through Unsupervised Clustering, 979-8-3315-1787-8, 552, 10.1109/ICAC64487.2024.10851006
    131. K. Sam Prince Franklin, Samba Siva Sai Davuluru, R. Parvathi, 2025, Chapter 2, 978-3-031-82385-5, 14, 10.1007/978-3-031-82386-2_2
    132. S. Jothika, M. Radhakrishnan, Stability and Control of a Vector-Host Disease Model with Time Delay and Saturated Treatment, 2025, 19, 1823-8343, 177, 10.47836/mjms.19.1.10
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5759) PDF downloads(1066) Cited by(130)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog