Citation: M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 761-784. doi: 10.3934/mbe.2014.11.761
[1] | Springer-Verlag. New York, 2001. |
[2] | John Wiley, New York, 1983. |
[3] | Springer-Verlag, London, 2013. |
[4] | SIAM J. Control Optim., 48, (2010), 4500-4524. |
[5] | Nonlinear Analysis, 63 (2005), e2591-e2602. |
[6] | Set-Valued and Variational Analysis, 17 (2009), 203-2219. |
[7] | MdR de Pinho,Hacet. J. Math. Stat., 40 (2011), 287-295. |
[8] | Department of Electrical and Electronic Engineering, Imperial College London, London, England, UK, 2010. |
[9] | SIAM Review, 37 (1995), 181-218. |
[10] | $2^{nd}$ Edition (405 pages), John Wiley, New York, 1980. |
[11] | In Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), Vol. 16. Chap. 1, pp. 1-61, World Scientific Publishing Co. Pte. Ltd., Singapore, 2008. |
[12] | Bulletin of Mathematical Biology, 53 (1991), 35-55. |
[13] | J. Optim. Theory Appl., 86 (1995), 649-667. |
[14] | SIAM J. Control Optm., 41 (2002), 380-403. |
[15] | SIAM Advances in Design and Control, 24, 2012. |
[16] | Optim. Control Appl. Meth., 32 (2011), 181-184. |
[17] | DIMACS Series in Discrete Mathematics, 75 (2010), 67-81. |
[18] | Project Report, 2013, http://paginas.fe.up.pt/~faf/ProjectFCT2009/report.pdf. |
[19] | Mathematical Biosciences and Engineering, 8 (2011), 141-170. |
[20] | Journal of Applied Mathematics, 2012 (2012), 1-20. |
[21] | Springer, New York, 2012. |
[22] | Applied Mathematical Modelling, 34 (2010), 2685-2697. |
[23] | Birkhäuser, Boston, 2000. |
[24] | Mathematical Programming, 106 (2006), 25-57. |