Citation: Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285
[1] | Virginia Giorno, Amelia G. Nobile . Exact solutions and asymptotic behaviors for the reflected Wiener, Ornstein-Uhlenbeck and Feller diffusion processes. Mathematical Biosciences and Engineering, 2023, 20(8): 13602-13637. doi: 10.3934/mbe.2023607 |
[2] | Kseniia Kravchuk, Alexander Vidybida . Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness. Mathematical Biosciences and Engineering, 2014, 11(1): 81-104. doi: 10.3934/mbe.2014.11.81 |
[3] | Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003 |
[4] | Giuseppina Albano, Virginia Giorno . Inference on the effect of non homogeneous inputs in Ornstein-Uhlenbeck neuronal modeling. Mathematical Biosciences and Engineering, 2020, 17(1): 328-348. doi: 10.3934/mbe.2020018 |
[5] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1 |
[6] | Wenrui Li, Qimin Zhang, Meyer-Baese Anke, Ming Ye, Yan Li . Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poisson jumps. Mathematical Biosciences and Engineering, 2020, 17(3): 2650-2675. doi: 10.3934/mbe.2020145 |
[7] | Meng Gao, Xiaohui Ai . A stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps. Mathematical Biosciences and Engineering, 2024, 21(3): 4117-4141. doi: 10.3934/mbe.2024182 |
[8] | Giacomo Ascione, Enrica Pirozzi . On a stochastic neuronal model integrating correlated inputs. Mathematical Biosciences and Engineering, 2019, 16(5): 5206-5225. doi: 10.3934/mbe.2019260 |
[9] | Giuseppina Albano . Detecting time-changes in $ PM_{10} $ during Covid pandemic by means of an Ornstein Uhlenbeck type process. Mathematical Biosciences and Engineering, 2021, 18(1): 888-903. doi: 10.3934/mbe.2021047 |
[10] | Huili Wei, Wenhe Li . Dynamical behaviors of a Lotka-Volterra competition system with the Ornstein-Uhlenbeck process. Mathematical Biosciences and Engineering, 2023, 20(5): 7882-7904. doi: 10.3934/mbe.2023341 |
[1] | Adv. Appl. Prob., 19 (1987), 784-800. |
[2] | Math. Biosci., 214 (2008), 122-133. |
[3] | Kybernetik (Berlin), 8 (1971), 214-223. |
[4] | Phys. Rev. E (3), 71 (2005), 011907, 9 pp. |
[5] | in Collective Dynamics: Topics on Competition and Cooperation in the Biosciences (eds. L. M. Ricciardi, A. Buonocore and E. Pirozzi), AIP Conf. Proc., 1028, Amer. Inst. Phys., Melville, NY, 2008, 171-185. |
[6] | Sci. Math. Jpn., 64 (2006), 1-36. |
[7] | Biophys. J., 4 (1964), 41-68. |
[8] | Adv. in Appl. Probab., 22 (1990), 883-914. |
[9] | BioSystems, 40 (1997), 75-82. |
[10] | Physics Letters A, 285 (2001), 132-140. |
[11] | J. Comput. Neurosci., 21 (2006), 211-223. |
[12] | Kybernetik, 3 (1966), 148-152. |
[13] | Math. Japon., 50 (1999), 247-322. |
[14] | Biol. Cyb., 35 (1979), 1-9. |
[15] | J. Opt. Soc. Am., 68 (1978), 386-402. |
1. | Giuseppe D’Onofrio, Enrica Pirozzi, Marcelo O. Magnasco, 2015, Chapter 22, 978-3-319-27339-6, 166, 10.1007/978-3-319-27340-2_22 | |
2. | Jun Peng, A note on the first passage time of diffusions with holding and jumping boundary, 2014, 93, 01677152, 58, 10.1016/j.spl.2014.06.012 | |
3. | Kamil Rajdl, Petr Lansky, Stein’s neuronal model with pooled renewal input, 2015, 109, 0340-1200, 389, 10.1007/s00422-015-0650-x | |
4. | Amelia G. Nobile, Enrica Pirozzi, 2015, Chapter 24, 978-3-319-27339-6, 183, 10.1007/978-3-319-27340-2_24 | |
5. | Virginia Giorno, Serena Spina, 2018, Chapter 8, 978-3-319-74726-2, 64, 10.1007/978-3-319-74727-9_8 | |
6. | A. Buonocore, L. Caputo, A.G. Nobile, E. Pirozzi, Restricted Ornstein–Uhlenbeck process and applications in neuronal models with periodic input signals, 2015, 285, 03770427, 59, 10.1016/j.cam.2015.01.042 | |
7. | Virginia Giorno, Amelia G. Nobile, On the Construction of a Special Class of Time-Inhomogeneous Diffusion Processes, 2019, 177, 0022-4715, 299, 10.1007/s10955-019-02369-2 | |
8. | G. Albano, V. Giorno, Inferring time non-homogeneous Ornstein Uhlenbeck type stochastic process, 2020, 150, 01679473, 107008, 10.1016/j.csda.2020.107008 | |
9. | Giuseppe D'Onofrio, Enrica Pirozzi, Successive spike times predicted by a stochastic neuronal model with a variable input signal, 2016, 13, 1551-0018, 495, 10.3934/mbe.2016003 | |
10. | Giuseppina Albano, Virginia Giorno, On Short-Term Loan Interest Rate Models: A First Passage Time Approach, 2018, 6, 2227-7390, 70, 10.3390/math6050070 | |
11. | Virginia Giorno, Amelia G. Nobile, On the Simulation of a Special Class of Time-Inhomogeneous Diffusion Processes, 2021, 9, 2227-7390, 818, 10.3390/math9080818 | |
12. | Antonio Di Crescenzo, Barbara Martinucci, Serena Spina, Continuous‐time multi‐type Ehrenfest model and related Ornstein–Uhlenbeck diffusion on a star graph, 2022, 45, 0170-4214, 5483, 10.1002/mma.8123 | |
13. | M. F. Carfora, 2023, Chapter 8, 978-3-031-33049-0, 137, 10.1007/978-3-031-33050-6_8 |