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Abstract. An Ornstein-Uhlenbeck diffusion process is considered as a model
for the membrane potential activity of a single neuron. We assume that the
neuron is subject to a sequence of inhibitory and excitatory post-synaptic po-
tentials that occur with time-dependent rates. The resulting process is char-
acterized by time-dependent drift. For this model, we construct the return
process describing the membrane potential. It is a non homogeneous Ornstein-
Uhlenbeck process with jumps on which the effect of random refractoriness
is introduced. An asymptotic analysis of the process modeling the number
of firings and the distribution of interspike intervals is performed under the
assumption of exponential distribution for the firing time. Some numerical
evaluations are performed to provide quantitative information on the role of
the parameters.

1. Introduction and background. In 1964, in [7] Gernstein and Mandelbrot
proposed a model of neuronal activity based on the Wiener process. These authors
demonstrated that with a suitable choice of parameters, the histograms of the in-
terspike intervals, experimentally recorded, could be plotted with a good degree of
approximation with the average of the first passage time (FPT) for a temporally
homogeneous Wiener process. Since then various other models based on diffusion
stochastic processes have been proposed to describe the evolution of the neuronal
membrane potential. In particular, to take account of the exponential decay ex-
hibited by the membrane potential in the absence of input of any type, in 1971
Capocelli and Ricciardi in [3] proposed a model based on the Ornstein-Uhlenbeck
(OU) process. This model has been used widely to describe the activity of a single
neuron (see, for instance [2], [9], [10], [14]). More recently attention has been paid
to the estimation of the parameters involved in this model (cf. [4], [5], [11]). Several
ways exist to derive this model, one of these consists of assuming that the neuron is
subject to a sequence of inhibitory and excitatory postsynaptic potentials (PSP’s)
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with constant amplitude that occur according to the Poisson’s law. Further, it is
assumed that, in the absence of input, the membrane potential decays exponentially
to a resting value, called resting potential, with a time constant which we denote
by θ. When this constant diverges, the OU model yields to the Wiener model.
To describe the spikes trains a return process is built on a non homogeneous OU
process in which the effect of random refractoriness is introduced. In this regard we
recall that the first attempt to study the effect of refractoriness in a point process
was made in [12] and in [15].

In the present work we assume that the inputs, while remaining a constant am-
plitude, are characterized by time-dependent rates, meaning that some external
stimulations are induced on the neuron; so that the involved Poisson process is not
homogeneous. In Section 2 the model, based on a non-homogeneous OU process, is
introduced. A comparison between the obtained OU model and the corresponding
time-homogeneous process is done analyzing the trajectories of the two processes
and considering the relative entropy of distributions characterizing the two models.
Particular attention is paid to the FPT random variable because it represents the
“theoretical counterpart”of the neuronal firing time, so that the FPT’s probability
density function (pdf) describes the pdf of the firing time. In this regard it should
be noted that for the OU process the FPT’s pdf is not known in closed form if not
for thresholds that are not of particular interest in the neuronal context, nonethe-
less, for the FPT pdf of the OU process is possible to make use of an asymptotic
behavior of exponential type (cf. [8]). To study the train of spikes, in Section 3,
we build the return process. It is a continuous process with jumps. The number of
firings and the distribution of interspike intervals are studied under the assumption
of exponential distribution for the firing time. In Section 4 we introduce random
downtimes which delay spikes, simulating the effect of refractoriness. A theoret-
ical and numerical analysis of the return process in the presence of constant and
exponential refractoriness is performed.

2. The model. To construct the model, we assume that the neuronal membrane
potential is subject to a sequence of inhibitory and excitatory postsynaptic poten-
tials characterized by constant magnitude ε occurring with time-dependent rates:

αi(t) =
Ai(t)

ε
+

σ2

2 ε2
, αe(t) =

Ae(t)

ε
+

σ2

2 ε2
,

where Ai(t), Ae(t) are positive function of time and σ2 > 0. Moreover, in the
absence of inputs the membrane potential decays to the resting potential with a
time constant θ > 0. So, making use of a standard procedure (cf., for instance,
[13]), it can be proved that the evolution of the neuronal membrane potential is
described via a diffusion process {X(t), t ≥ 0} defined in R whose infinitesimal
moments are related to the rates. In particular, the drift and infinitesimal variance
of X(t) are

A1(x, t) = −x

θ
+ µ(t), A2 = σ2, (1)

respectively, with

µ(t) = lim
ε→0

ε [αe(t)− αi(t)] = µ+m(t), σ2 = lim
ε→0

ε2[αe(t) + αi(t)].

Note that when θ diverges X(t) becomes a Wiener process with drift µ(t). Our
study is led on the model characterized by a generic function m(t). Moreover, to
give a quantitative information on the evolution of the membrane potential, we focus
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Figure 1. On the left a sample path of X̃(t) is plotted for µ = −14,

θ = 5, σ = 1 and X(0) = X̃(0) = −70. For the same parameters,

sample paths of X̃(t) (blue line), of X(t) with m(t) = sin t (magenta
line), m(t) = 5 sin t (black line) and m(t) = 10 sin t (red line) are plotted
on the right.

on the case m(t) = A sin t because this situation reflects some oscillatory effects of
the environment acting on the neuron. In general, X(t) is solution of the following
stochastic equation:

dX(t) =
[
− X(t)

θ
+ µ+m(t)

]
dt+ σ dB(t) (2)

where B(t) is a standard Wiener process. Eq. (2) describes the evolution of the
membrane potential.

To analyze the effect of the time dependent drift, in the following we denote by
X̃(t) the process obtained from X(t) when m(t) = 0. Hence, X̃(t) is described by
the following equation:

dX̃(t) =
[
− X̃(t)

θ
+ µ

]
dt+ σ dB(t). (3)

Of course X̃(t) is a time homogeneous OU process with drift Ã1(x) = −x/θ+µ and

infinitesimal variance Ã2 = σ2. In Figure 1 the sample paths of X̃(t) and of X(t)
with periodic m(t) are compared. In particular, we have chosen µ = −14 mV/ms,

θ = 5 ms, σ = 1 mV/ms1/2, X(0) = X̃(0) = −70 mV and we have considered
various amplitudes of m(t): m(t) = sin t (magenta line), m(t) = 5 sin t (black line)

and m(t) = 10 sin t (red line). The sample path of X̃(t) is flat when it is compared
to the others; hence the introduction of m(t) makes the process more fluctuating.
Moreover, by increasingA (magnitude of the environmental fluctuations) the sample
paths of the process become more and more oscillating.

Note that X̃(t) can be obtained from X(t) via a transformation as shown in the
following Proposition.

Proposition 1. The process

X̃(t) = X(t) + d(t), (4)

with

d(t) = −e−t/θ

∫ t

t0

m(u) eu/θ du, (5)
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is a homogeneous OU process characterized by drift and infinitesimal variance

Ã1(x) = −x/θ + µ Ã2 = σ2. (6)

Proof. Let v[X(t), t] = X̃(t), from the Ito’s lemma we have that X̃(t) satisfies the
following stochastic equation

dX̃(t) =

(
∂v

∂t
+

∂v

∂x
F +

1

2
σ2 ∂2v

∂x2

)
dt+

∂v

∂x
σ dB(t), (7)

where

∂v

∂t
= −m(t)− d(t)

θ
,

∂v

∂x
= 1,

∂2v

∂x2
= 0, F = −X(t)

θ
+ µ+m(t).

It follows that

dX̃(t) =

(
−X(t) + d(t)

θ
+ µ

)
dt+ σ dB(t) ≡

(
− X̃(t)

θ
+ µ

)
dt+ σ dB(t),

is the Ito’s equation for the diffusion process X̃(t) characterized by infinitesimal
moments (6).

In particular, by choosing m(t) = A sin(t) and t0 = 0, we have

d(t) =
Aθ

1 + θ2

[
θ
(
cos t− e−t/θ

)
− sin t

]
, (8)

and d(0) = 0.

2.1. Transition probability density function. The transition pdf of X(t) is a
normal density:

f(x, t|y, τ) = 1√
2 π V (t|τ)

exp

{
− [x−M(t|y, τ)]2

2V (t|τ)

}
(9)

Figure 2. For µ = −14, θ = 5, σ = 2, the pdf’s f̃(−65, t| − 70, 0) (red
line) and f(−65, t| − 70, 0) (black line) with m(t) = sin t are plotted.
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Figure 3. For the same parameters of Figure 2, D(f |f̃ ) is plotted with
m(t) = sin t (magenta line), m(t) = 5 sin t (black line) andm(t) = 10 sin t
(red line).

with mean and variance

M(t|y, τ) = µθ + (y − µθ) e−(t−τ)/θ + e−t/θ

∫ t

τ

m(u)eu/θ du,

V (t|τ) = σ2θ

2

[
1− e−2 (t−τ)/θ

]
, (10)

respectively. Note that if m(t) is such that

m = lim
t→∞

e−t/θ

∫ t

τ

m(u)eu/θ du, (11)

exists and it is finite, then the steady state density of X(t) is:

w(x) = lim
t→∞

f(x, t|y, τ) = 1√
πσ2θ

exp

{
− [x− µθ −m]2

σ2θ

}
. (12)

Alternatively, when m(t) is a periodic function with period Q it is possible to
consider limn→∞ f(x, t+ nQ|y, τ) = w(x, t); if this limit exists w(x, t) plays a role
analogous to steady state density.

To analyze the influence of m(t) on the transition pdf, we consider the relative

entropy between f(x, t|y, τ) and f̃(x, t|y, τ):

D(f |f̃) =
∫

R

f(x, t|y, τ) log f(x, t|y, τ)
f̃(x, t|y, τ)

dx, (13)

where

f̃(x, t|y, τ) = 1√
2 π V (t|τ)

exp

{
− [x− M̃(t|y, τ)]2

2V (t|τ)

}
, (14)

with M̃(t|y, τ) = y e−(t−τ)/θ + µθ[1 − e−(t−τ)/θ], represents the transition pdf of

X̃(t). The relative entropy, although it is not symmetrical, is used as a measure of

the distance between f e f̃ . Making use of (9) and (14), from (13) we have

D(f |f̃) = [M(t|y, τ)− M̃(t|y, τ)]2
2V (t|τ)2 . (15)
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In Figure 2 for µ = −14, θ = 5, σ = 2 we plot the time functions f̃(−65, t| − 70, 0)
(blue line) and f(−65, t| − 70, 0) with m(t) = A sin t by choosing A = 1 (magenta
line), A = 2 (black line) and A = 3 (red line). The function f(−65, t| − 70, 0)

fluctuates around f̃(−65, t|− 70, 0) and the width of the fluctuations increases as A

increases. To analyze the distance between f and f̃ , in Figure 2 the relative entropy
(15) is plotted for the same parameters of Figure 2. Note that the relative entropy

vanishes at times in which f = f̃ , moreover it increases as A increases in according
to the behavior shown in Figure 2.

2.2. First passage time problem. Let S ∈ R be a state of process X(t) repre-
senting the firing threshold. Let

Ty = inf
t>τ

{X(t) > S|X(τ) = y}

be the FPT through S and let

g(S, t|y, τ) = dP (Ty ≤ t)

dt

be FPT pdf. The random variable Ty describes the time of occurrence of neuronal
spike and g(S, t|y, τ) is the theoretical counterpart of the firing pdf for the neuron.
Making use of the Proposition 1 we can study the FPT problem of X(t) through S

via the FPT problem of X̃(t) through

S̃(t) = S + d(t) = S − e−t/θ

∫ t

m(u) eu/θ du. (16)

In particular, denoting by g̃[S̃(t), t|ỹ, τ ] the FPT pdf of X̃(t) from ỹ = y + d(τ)

through S̃(t), we have that g(S, t|y, τ) = g̃[S̃(t), t|ỹ, τ ]; so we focus on g̃[S̃(t), t|ỹ, τ ].
Unfortunately, the FPT pdf g̃ is known analytically only in particular cases that
aren’t of interest in the present context. However, numerical approximations for
FPT pdf can be obtained via appropriate algorithms (cf., for example, [1]). Fur-

thermore, since X̃(t) admits steady state density

w̃(x) = lim
t→∞

f̃(x, t|y, τ) = 1√
πσ2θ

exp

{
− [x− µθ]2

σ2θ

}
, (17)

under large assumptions, one can prove that the FPT pdf exhibits an exponential
behavior for large times when the boundary is far from the starting point (cf. [8]).
In particular, two cases can be distinguished:

1. if S̃(t) admits limit and S̃ = limt→∞ S̃(t), then for large times one has:

g̃[S̃(t), t|τ ] ∼ D(S̃) exp{−D(S̃) (t− τ)} (18)

where

D(S̃) =
[ S̃
θ
− µ

]
w̃(S̃);

2. if S̃(t) is a periodic function of period Q then, for sufficiently large time it
happens

g̃[S̃(t), t|τ ] ∼ λ(t) exp {−Λτ (t)} , (19)

where

λ(t) =

{
−U ′(t) +

U(t)

θ
− µ

}
w̃[U(t)] and Λτ (t) =

∫ t

τ

λ(u) du, (20)
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with U(t) = limn→∞ S̃(t+ nQ) and w̃(x) defined in (17).

In the present context m(t) = A sin(t), so that U(t) = S + d(t) with d(t) given in
(8), hence one has:

λ(t) =

[
A sin(t) +

S + d(t)

θ
− µ

]
w̃[U(t)].

In Figure 4 the approximation of the FPT pdf g̃[S̃(t), t|τ ] obtained via (19) is plotted

for S̃(t) = −60 + d(t) with m(t) = sin(t) for µ = −14, θ = 5 and σ = 2, while in
Figure 5 we have chosen σ = 3.
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Figure 4. For the process X̃(t) with µ = −14, θ = 5 and σ = 2, the
approximation of FPT pdf (19) is plotted for S(t) = −60 + d(t) with
m(t) = sin(t).
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Figure 5. As Figure 4 with σ = 3.
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3. The return process. In this Section the return process constructed on X̃(t)
is studied to describe the train of spikes characterizing the neuronal activity. Note
that in the Case 1. of Section 2 the firing threshold is asymptotically constant so
the firing time mean is time independent. This situation has been widely studied in
[6], so that in the following we will analyze the return process constructed on X̃(t)
making use of the exponential approximation of the FPT pdf (19).

3.1. Description of the process. Let Z(t) be the return process constructed

from X̃(t) in the following way. Starting at Z(0) = X̃(0) = η, the process goes on

as described by (4) until S̃(t), defined in (16), is reached for the first time. After
this time the process is instantaneously reset to η and then evolves as described by
(4) until S̃(t) is reached again.

The process Z(t) consists of recurrent cycles I1, I2, . . . of random duration
described by I1, I2, . . .. The random variable Ii represents the i-th interspike
interval (ISI); indeed I1 is the waiting time for the first firing and, for i = 2, 3, . . .,
Ii measures the time interval elapsing between the (i− 1)-th and the i-th firing.

Each sample path of Z(t) is solution of the following stochastic equation:

dZ(t) =

(
−Z(t)

θ
+ µ

)
dt+ σ dB(t)− d[(S̃(t)− η)P (t)] (21)

whereB(t) is a standardWiener process, P (t) is a non-homogeneous Poisson process

with intensity λ(t) given in (20) and the term S̃(t)− η represents the amplitude of
the jumps. In this context, each return occurs simultaneously with a jump and it
represents a neuronal spike.

Figures 6-9 show the sample-paths of Z(t) assuming that the process returns on

the starting point η when the boundary S̃(t) is reached. In Figure 6, we have σ = 1

and S̃(t) = −50 + d(t) with d(t) given in (8), so the distance between the starting
point η = −70 and the threshold is approximatively 20; moreover η is different from
the equilibrium point of the process being µθ = −50. In Figure 7 the boundary
has been approached to η = −70, simultaneously the width of the environmental
oscillations has been increased, consequently the frequency of the jumps increases.
In Figures 8 and 9 we have chosen η = µθ = −70 and S̃(t) such that |S̃(t)−η| ≈ 10.
Note that in Figures 8 the boundary is rarely reached although σ = 3; increasing σ
the frequency of the jumps increases as shown in Figures 9 where σ = 4.

3.2. Analysis of interspike intervals (ISI). To analyze the sequence of the

spikes we denote with T̃ = (T̃1, T̃2, . . . , T̃n) the random vector that represents the

instants of time in which single firings occur. Note that each T̃i is a FPT, moreover
the variables T̃i conditioned from T̃i−1 = ti−1 are independent and distributed

according to g̃[S̃(t), t|ti−1]. Now we study the joint density of T̃.
For t0 < t1 < t2 < . . . < tn it follows:

f
T̃
(t1, t2, . . . , tn) =

n∏

i=1

λ(ti) exp{−Λti−1
(ti)} = exp{−

n∑

i=1

Λti−1
(ti)}

n∏

i=1

λ(ti)

= exp{−Λt0(tn)}
n∏

i=1

λ(ti). (22)
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Figure 6. For η = −70, µ = −10, θ = 5 and σ = 1, a sample path
of Z(t) is plotted assuming S̃(t) = S + d(t) (black curve) with S = −50
and d(t) given in (8).

Figure 7. As in Figure 6 with σ = 2 and S = −60.

From (22) the marginal density and the distribution function of the i-th element T̃i

of T̃ can be determined. Indeed one has

fT̃i
(ti) =

∫ ti

t0

dti−1

∫ ti−1

t0

dti−2 . . .

∫ t2

t0

dt1 fT̃1,T̃2,...,T̃i
(t1, t2, . . . , ti)

=

∫ ti

t0

dti−1

∫ ti−1

t0

dti−2 . . .

∫ t2

t0

dt1 exp{−Λt0(ti)}
i∏

j=1

λ(tj)

and, after k < i integrations, one has:

fT̃i
(ti) =

exp{−Λt0(ti)}λ(ti)
k!

∫ ti

t0

λ(ti−1)dti−1 . . .

∫ tk+2

t0

λ(tk+1)[Λ(tk+1)]
kdtk+1;
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Figure 8. As in Figure 6 with µ = −14, σ = 3 and S = −60.

Figure 9. As in Figure 8 with σ = 4.

hence, it results:

fT̃i
(ti) = λ(ti)

[Λt0(ti)]
i−1

(i− 1)!
exp{−Λ0(ti)}. (23)

From (23) the marginal distribution function of T̃i can be determined. In particular
one has:

FT̃i
(t) =

∫ t

t0

exp{−Λt0(ti)}λ(ti)
[Λt0(ti)]

i−1

(i − 1)!
dti;

placing x = Λt0(t) so that dx = λ(t)dt, it follows:

FT̃i
(t) =

∫ Λt0
(t)

t0

xi−1

(i− 1)!
e−x dx.
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Therefore

FT̃i
(t) = 1−

i−1∑

k=0

[Λt0(t)]
k

k!
exp{−Λt0(t)}. (24)

We use (24) to determine the probability of occurrence of k firings up to time t.
To this aim, we denote by M(t) the stochastic process that counts the number of
firings records in (t0, t). It results that M(t) is a Poisson process with intensity
Λt0(t). Indeed,

P [M(t) = k|M(t0) = 0] = P [M(t) ≥ k|M(t0) = 0]− P [M(t) ≥ k + 1|M(t0) = 0]

= FT̃k
(t)− FT̃k+1

(t) =
[Λt0(t)]

k

k!
exp{−Λt0(t)}. (25)

To analyze the ISI distribution we assume that T̃0 = t0 and for n = 0, 1, . . . we
denote with In+1 = T̃n+1 − T̃n the random variable describing the duration of the
(n+1)-th ISI, i.e. the duration of the time interval between the n-th and (n+1)-th
firing. One has:

FIn+1|T̃n
(x|tn) = P [In+1 ≤ x|T̃n = tn] = 1− P [In+1 > x|T̃n = tn]

= 1− P [T̃n+1 > x+ tn|T̃n = tn] =

∫ x+tn

tn

g̃[S̃(t), t|tn] dt, (26)

so, assuming that (19) holds, it follows that

FIn+1|T̃n
(x|tn) = 1− exp{−Λtn(tn + x)}. (27)

Therefore, In+1 conditioned from T̃n = tn (n = 0, 1, . . .) is distributed according to
an exponential law with parameter Λtn(tn + x) and its pdf is

fIn+1|T̃n
(x|tn) =

∂

∂x
FIn+1|T̃n

(x|tn) = λ(tn + x) exp{−Λtn(tn + x)}. (28)

4. The effect of refractoriness. The refractoriness is the time interval of variable
duration that follows a spike during which the neuron is incapable of responding to
input signals. We introduce refractoriness periods in the return process so that the
interspike’s interval, starting from the second one, can be considered as consisting
of the sum of two terms: the first one represents the refractory period following the
firing, the second term describes the time for firing from the state η. Therefore we
construct a new process ZR(t) describing the evolution of membrane potential in

the presence of refractoriness as follows. Starting at ZR(t0) = X̃(t0) = η, a firing

takes place when X̃(t) attains for the first time the firing threshold S̃(t), after which
the neuron is unable to fire again for a period of refractoriness of random duration.
At the end of this period, ZR(t) is instantaneously reset to η. The subsequent

evolution of the process then goes on as described by X̃(t), until the boundary is
again reached. A new firing then occurs, followed by the period of refractoriness,
and so on. In Figures 10 and 11 sample paths of ZR(t) are showed.

The process ZR(t) consists of recurrent cycles F0, R1, F1, R2, . . . each of ran-
dom duration. The duration of cycle Fi is represented by the random variable Fi

described by the FPT pdf of X̃(t) through S̃(t) starting from η. Moreover, for
i = 1, 2, . . ., the refractory period Ri is represented by the random variable Ri that
we assume to have pdf φti(t) depending on the time ti at which the last spike is
occurred. In particular, for i = 0, 1, . . ., the duration Fi of Fi denotes the time
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interval elapsing between the i-th reset of the membrane potential at the value η
and the (i + 1)-th FPT from η to S̃(t). Instead, for i = 1, 2, . . ., Ri indicates the
duration of the i-th refractory period. We note that the random variables Fi aren’t
iid because they depend on the instant of the last reset as well as R1, R2, . . . that
depend on the last firing time.

The random variables that describe the ISI are given by:

Î1 = F0, În+1 = Rn + Fn (n = 1, 2, . . .).

To study the ISI pdf’s we denote by T̂ = (T̂1, T̂2, . . . , T̂n) the random vector that
represents the instants of time in which single firings occur during the evolution of

ZR(t). Note that the variable T̂1 = Î1 is a FPT, moreover T̂n =
∑n

k=1 Îk. Let

FÎn+1|T̂n
(x|tn) = P [În+1 ≤ x|T̂n = tn] (29)

be the ISI distribution conditioned by occurrence of the last firing at the time tn.

Proposition 2. For n = 1, 2, . . . the ISI conditional distribution is:

FÎn+1|T̂n
(x|tn) =

∫ x+tn

tn

φtn(r) [1− exp{−Λr(x + tn)}] dr (30)

and the ISI conditional pdf results:

fÎn+1|T̂n
(x|tn) =

∫ x+tn

tn

φtn(r)λ(tn + x) exp {−Λr(x+ tn)} dr. (31)

Proof. To obtain the distribution FÎn+1|T̂n
(x|tn) we note that x represents the width

of the interval (tn, tn + x). So, after the instant of the n-th firing, occurred at time
tn, there is a refractory period that can have width at most x and ends at time r.
In the remaining interval (r, tn + x) another firing occurs. It follows that:

FÎn+1|T̂n
(x|tn) =

∫ x+tn

tn

dr φtn(r)

∫ x+tn

r

du λ(u) exp

{
−
∫ u

r

λ(v) dv

}
,

from which, recalling (20), Eq. (30) immediately follows. By taking the derivative
with respect to x, we get:

fÎn+1|T̂n
(x|tn) =

∂

∂x

∫ x+tn

tn

[φtn(r) (1− exp {−Λr(x + tn)})] dr

= φtn(tn + x) [1− exp {−Λtn+x(tn + x)}] ∂(tn + x)

∂x

−φtn(tn) [1− exp {−Λtn(tn + x)}] ∂(tn)
∂x

+

∫ x+tn

tn

φtn(r)λ(tn + x) exp {−Λr(x+ tn)} dr (32)

that leds to (31).

In the following we consider two types of refractoriness. In the first case the
refractoriness is constant and its duration is 1/ξ, whereas in the second case we
consider a refractoriness period of random duration characterized by exponential
distribution with parameter ξ, so that its mean duration is the same as that of the
constant case.
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Figure 10. A sample path of ZR(t) is plotted for the same parameters
of Figure 6, with a constant refractoriness of 5 millsec.

Figure 11. A sample path of ZR(t) is plotted for the same parameters
of Figure 8, with a constant refractoriness of 5 millsec.

4.1. Constant refractory period. We assume that the refractoriness period is
constant and of duration 1/ξ with ξ > 0. Since in this case the refractoriness is not
random we can describe its pdf via the Dirac delta function denoted by δ(·). So,
assuming that the last spike occurs at the instant τ , one has:

φτ (t) = δ

(
t− τ − 1

ξ

)
. (33)

Thanks to Proposition 2, the ISI distribution can be evaluated. In particular, from
(30), recalling (33) and making use of the properties of the Dirac delta function, it
follows that:
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FÎn+1|T̂n
(x|tn) =

∫ tn+x

tn

δ

(
r − tn − 1

ξ

)
[1− exp {−Λr(tn + x)}] dr

=

{
1− exp

{
−Λtn+

1
ξ
(tn + x)

}
, if x > 1

ξ

0, if x < 1
ξ ,

(34)

with Λτ (t) defined in (20). Hence, one has:

FÎn+1|T̂n
(x|tn) = H

(
x− 1

ξ

)[
1− exp

{
−Λtn+

1
ξ
(tn + x)

}]
, (35)

where H(x) is the Heaviside unit step function. Furthermore, the ISI pdf is:

fÎn+1|T̂n
(x|tn) = H

(
x− 1

ξ

)[
λ(tn + x) exp

{
−Λtn+

1
ξ
(tn + x)

}]
. (36)

In Figure 12 the ISI pdf in the presence of constant refractoriness is plotted. We have
chosen ξ = 0.1 (red line) which represents a refractoriness of 10 milliseconds and ξ =
1 (black line). Note that when the refractoriness period is longer (red line) the ISI
pdf assumes higher values at times greater than 10 milliseconds. Indeed, for a fixed
time x ≥ 10, the spikes are more frequent for shorter refractoriness, consequently the
distribution of the ISI decreases when ξ increases. The ISI pdf without refractoriness
fIn+1|T̃n

and the ISI pdf in the presence of constant refractoriness fÎn+1|T̂n
can be

compared. Indeed, in Figure 13 are plotted fIn+1|T̃n
and fÎn+1|T̂n

for refractoriness

of duration 1/ξ = 10 ms, assuming that the last spike occurs at the same time
tn: note that the ISI pdf with refractoriness is not shifted with respect to that
without refractoriness, as you would expect. This is due to the assumption that
the two densities are evaluated for the same instant tn. To point out this property
we consider the ISI pdf without refractoriness for tn + 1/ξ as showed in Figure 14
where fÎn+1|T̂n

(x|tn) and fIn+1|T̃n
(x|tn + 1

ξ ) are compared.
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0.035

Figure 12. For the same parameters of Figure 8 and tn= 5 ms the ISI
pdf’s in the presence of constant refractoriness, given in (36), are plotted
for ξ = 1 (black line) and ξ = 0.1 (red line).
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Figure 13. The ISI pdf’sfIn+1|T̃n
(x|tn) (blue line) and f

În+1|T̂n
(x|tn)

with ξ=0.1ms (red line) are plotted for the same parameters of Figure 12.
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Figure 14. Comparison between the ISI pdf’s f
În+1|T̂n

(x|tn) and

fIn+1|T̃n
(x|tn + 1

ξ
) for the same parameters of Figure 13.

4.2. Exponential refractory period. We suppose that the refractory period is
a random variable having an exponential distribution of parameter ξ. Hence, as-
suming that the last firing occurs at time τ one has:

φτ (t) =

{
ξ exp {−ξ(t− τ)}, if t > τ
0, if t ≤ τ.

(37)

To determine the ISI distribution we make use of the Proposition 2. In particular,
from (30), recalling (37), one has:

FÎn+1|T̂n
(x|tn) =

∫ tn+x

tn

ξe−ξ(r−tn)[1− exp {−Λr(tn + x)}] dr (x > τ), (38)
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from which it follows:

FÎn+1|T̂n
(x|tn) = 1− e−ξx − ξeξtn

∫ tn+x

tn

exp {−ξr − Λr(tn + x)} dr (x > τ),

(39)
where Λτ (t) is defined in (20). Moreover, the ISI density in the presence of expo-
nential refractoriness is

fÎn+1|T̂n
(x|tn) = ξeξtnλ(tn+x)

∫ tn+x

tn

exp {−ξr − Λr(tn + x)} dr (x > τ). (40)

In Figure 15 the ISI density fÎn+1|T̂n
(x|tn) in the presence of exponential refrac-

toriness, obtained from Eq. (40), is plotted for ξ = 0.1 (red line) and for ξ = 1
(black line). Note that for small amplitudes (small values of x) the ISI pdf for ξ = 1
exceeds the density for ξ = 0.1 and then this behavior reverses, differently from the
case of constant refractoriness (cf. Figure 12). Indeed, since the refractoriness mean
is 1/ξ ms, one has that for small values of x, corresponding to small ISI durations, it
is more likely that the neuron with smaller mean refractoriness fires. As in the case
of constant refractoriness we compare the ISI densities with and without refractori-
ness. In Figure 16 are plotted fIn+1|T̃n

(x|tn) (blue line) and fÎn+1|T̂n
(x|tn) (red line)

with ξ = 0.1. Note that, also in this case, the curves are not shifted, whereas this
property is verified when we compare fIn+1|T̃n

(x|tn + 1
ξ ) and fÎn+1|T̂n

(x|tn) at least
for great values of x as we can see in Figure 17.
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Figure 15. The ISI pdf given in Eq. (40) with ξ = 1 (black line) and
with ξ = 0.1 (red line) are plotted for the same parameters of Figure 8
and for tn= 5 ms.

5. Conclusions. In this paper we have analyzed the membrane potential activity
of a neuron subject to some external stimulations. To this aim, we have considered
an OU process characterized by a time- dependent drift in which there appears a
function m(t) that represents the additional external input acting on the neuron.
The result has been a non-homogeneous OU model. We have considered a periodic
function m(t), as this situation reflects some oscillatory effects of the environment
acting on the neuron. To analyze the ISI distribution a return process has been
considered. In this process we have introduced random downtimes which delay
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Figure 16. The ISI pdf’s fIn+1|T̃n
(x|tn) (blue line) and f

În+1|T̂n
(x|tn)

(red line) given in Eq. (40) with ξ = 0.1 for the same parameters of
Figure 15.
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Figure 17. Comparison between the densities fIn+1|T̃n
(x|tn+

1

ξ
) (blue

line) and f
În+1|T̂n

(x|tn), for the same parameters of Figure 16.

spikes, simulating the effect of refractoriness. The expression of the ISI distribution
has been obtained. This distribution is conditioned by the time in which the last fire
occurs. We have focused on constant and exponential refractoriness characterized by
the same mean value. Some similarities between the ISI pdf with refractoriness and
without refractoriness have been observed. In particular, our analysis has showed
that the ISI pdf in the presence of refractoriness is shifted with respect to the ISI
pdf in the absence of refractoriness provided the latter is suitably conditioned. This
observation supports the proposed model.

Future research may investigate the behavior of the model with different external
inputs (different choices of the function m(t)) as well as different refractoriness
distributions.
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