What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?

  • Received: 01 December 2013 Accepted: 29 June 2018 Published: 01 June 2014
  • MSC : Primary: 92B08, 92D08; Secondary: 92B04.

  • Circular migrations are the periodic movement of individuals betweenmultiple locations, observed in parts of sub-SaharanAfrica. Relationships between circular migrations and HIV are complex,entailing interactions between migration frequency, partnershipstructure, and exposure to acute HIV infection. Mathematical modelingis a useful tool for understanding these interactions.
        Two modeling classes have dominated the HIV epidemiology and policyliterature for the last decade: one a form of compartmental models,the other network models. We construct models from each class, usingordinary differential equations and exponential random graph models,respectively.
        Our analysis suggests that projected HIV prevalence is highlysensitive to the choice of modeling framework. Assuming initial equalHIV prevalence across locations, compartmental models show noassociation between migration frequency and HIV prevalence orincidence, while network models show that migrations at frequenciesshorter than the acute HIV period predict greater HIV incidence andprevalence compared to longer migration periods. These differences arestatistically significant when network models are extended toincorporate a requirement for migrant men's multiple partnerships tooccur in different locations. In settings with circular migrations,commonly-used forms of compartmental models appear to miss keycomponents of HIV epidemiology stemming from interactions ofrelational and viral dynamics.

    Citation: Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau. What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?[J]. Mathematical Biosciences and Engineering, 2014, 11(5): 1065-1090. doi: 10.3934/mbe.2014.11.1065

    Related Papers:

    [1] Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403
    [2] Brandy Rapatski, Petra Klepac, Stephen Dueck, Maoxing Liu, Leda Ivic Weiss . Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000. Mathematical Biosciences and Engineering, 2006, 3(3): 545-556. doi: 10.3934/mbe.2006.3.545
    [3] Sonza Singh, Anne Marie France, Yao-Hsuan Chen, Paul G. Farnham, Alexandra M. Oster, Chaitra Gopalappa . Progression and transmission of HIV (PATH 4.0)-A new agent-based evolving network simulation for modeling HIV transmission clusters. Mathematical Biosciences and Engineering, 2021, 18(3): 2150-2181. doi: 10.3934/mbe.2021109
    [4] Romulus Breban, Ian McGowan, Chad Topaz, Elissa J. Schwartz, Peter Anton, Sally Blower . Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses. Mathematical Biosciences and Engineering, 2006, 3(3): 459-466. doi: 10.3934/mbe.2006.3.459
    [5] Andrew Omame, Sarafa A. Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L. Bragazzi, Xiaoying Wang, Woldegebriel A. Woldegerima, Jude D. Kong . Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach. Mathematical Biosciences and Engineering, 2025, 22(2): 225-259. doi: 10.3934/mbe.2025010
    [6] Wenshuang Li, Shaojian Cai, Xuanpei Zhai, Jianming Ou, Kuicheng Zheng, Fengying Wei, Xuerong Mao . Transmission dynamics of symptom-dependent HIV/AIDS models. Mathematical Biosciences and Engineering, 2024, 21(2): 1819-1843. doi: 10.3934/mbe.2024079
    [7] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [8] Cameron J. Browne, Chang-Yuan Cheng . Age-structured viral dynamics in a host with multiple compartments. Mathematical Biosciences and Engineering, 2020, 17(1): 538-574. doi: 10.3934/mbe.2020029
    [9] A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337
    [10] Britnee Crawford, Christopher Kribs-Zaleta . A metapopulation model for sylvatic T. cruzi transmission with vector migration. Mathematical Biosciences and Engineering, 2014, 11(3): 471-509. doi: 10.3934/mbe.2014.11.471
  • Circular migrations are the periodic movement of individuals betweenmultiple locations, observed in parts of sub-SaharanAfrica. Relationships between circular migrations and HIV are complex,entailing interactions between migration frequency, partnershipstructure, and exposure to acute HIV infection. Mathematical modelingis a useful tool for understanding these interactions.
        Two modeling classes have dominated the HIV epidemiology and policyliterature for the last decade: one a form of compartmental models,the other network models. We construct models from each class, usingordinary differential equations and exponential random graph models,respectively.
        Our analysis suggests that projected HIV prevalence is highlysensitive to the choice of modeling framework. Assuming initial equalHIV prevalence across locations, compartmental models show noassociation between migration frequency and HIV prevalence orincidence, while network models show that migrations at frequenciesshorter than the acute HIV period predict greater HIV incidence andprevalence compared to longer migration periods. These differences arestatistically significant when network models are extended toincorporate a requirement for migrant men's multiple partnerships tooccur in different locations. In settings with circular migrations,commonly-used forms of compartmental models appear to miss keycomponents of HIV epidemiology stemming from interactions ofrelational and viral dynamics.


    [1] AIDS, 22 (2008), 1055-1061.
    [2] PLoS Med., 8 (2011), e1000423.
    [3] Math. Biosci., 107 (1991), 413-430.
    [4] Sex. Transm. Infect., 87 (2011), 646-653.
    [5] International Migration Review, 33 (1999), 833-856.
    [6] Public Health, 125 (2011), 318-323.
    [7] Curr. Opin. HIV AIDS, 6 (2011), 124-130.
    [8] Plos One, 5 (2010), e11539.
    [9] PLoS ONE, 7 (2012), e43048.
    [10] JAIDS- Journal of Acquired Immune Deficiency Syndrome, 47 (2008), S34-S39.
    [11] Social Science & Medicine, 63 (2006), 1000-1010.
    [12] Journal of Infectious Diseases, 191 (2005), S159-S167.
    [13] {AIDS}, 21 (2007), 343-350.
    [14] BMC Infect. Dis., 11 (2011), p216.
    [15] Tropical Medicine & International Health, 15 (2010), 1458-1463.
    [16] J. Math. Biol., 26 (1988), 1-25.
    [17] in AIDS Epidemiology: Methodological Issues (eds. N. P. Jewell, K. Dietz and V. T. Farewell), Birkhäuser, 1992, 143-155.
    [18] J. Theor. Biol., 288 (2011), 9-20.
    [19] PLoS Medicine, 9 (2012), e1001245.
    [20] Int. J. STD AIDS, 22 (2011), 558-567.
    [21] Sex. Transm. Infect., 84 (2008), 4-11.
    [22] PLoS Med., 9 (2012), e1001323.
    [23] J. Infect. Dis., 191 (2005), S147-S158.
    [24] Sex. Transm. Infect., 83 (2007), 458-462.
    [25] AIDS and Behavior, 16 (2012), 312-322.
    [26] Journal of the International AIDS Society, 14 (2011), p12.
    [27] PLoS ONE, 7 (2012), e50522.
    [28] J. Math. Biol., 26 (1988), 635-649.
    [29] Seattle, WA, 2003. Version 2.0.
    [30] Journal Of Infectious Diseases, 198 (2008), 687-693.
    [31] Journal of the American Statistical Association, 103 (2008), 248-258.
    [32] Sex. Transm. Infect., 87 (2011), 629-634.
    [33] Princeton University Press, Princeton, 2008.
    [34] Ecology Letters, 5 (2002), 20-29.
    [35] J. Theor. Biol., 298 (2012), 147-153.
    [36] Annu Rev Public Health, 25 (2004), 303-326.
    [37] Epidemiology, 13 (2002), 622-624.
    [38] Jpn. J. Infect. Dis., 58 (2005), 3-8.
    [39] AIDS Behav., 16 (2012), 1746-1752.
    [40] Statistical Methodology, 8 (2011), 319-339.
    [41] American Journal of Epidemiology, 148 (1998), 88-96.
    [42] South African Journal of Science, 96 (2000), 343-347.
    [43] Health Transition Review, 7 (1997), 17-27.
    [44] Sexualy Transmitted Diseases, 30 (2003), 149-156.
    [45] AIDS, 17 (2003), 2245-2252.
    [46] Journal of Ethnic and Migration Studies, 32 (2006), 649-666.
    [47] AIDS Behav., 14 (2010), 11-16.
    [48] Nature, 326 (1987), 137-142.
    [49] Philosophical Transactions Of The Royal Society Of London Series B-Biological Sciences, 321 (1988), 565-607.
    [50] Bulletin (New Series) of the American Mathematical Society, 44 (2007), 63-86.
    [51] AIDS Behav., 18 (2014), 783-790.
    [52] Journal of Statistical Software, 24 (2007), 1-24.
    [53] American Journal of Public Health, 99 (2009), 1023-1031.
    [54] Tropical Medicine & International Health, 11 (2006), 705-711.
    [55] Vaccine, 29 (2011), 6079-6085.
    [56] AIDS And Behavior, 12 (2008), 677-684.
    [57] Lancet, 378 (2011), 256-268.
    [58] Proceedings of the National Academy of Sciences, 91 (1994), 2407-2414.
    [59] Epidemiology, 21 (2010), 349-359.
    [60] PLoS ONE, 7 (2012), e50669.
    [61] PLoS Comput. Biol., 7 (2011), e1001109.
    [62] Hum. Biol., 63 (1991), 683-695.
    [63] J. Int. AIDS Soc., 14 (2011), 44.
    [64] Version 0.9-9, 2012.
    [65] PLoS ONE, 7 (2012), e29098.
    [66] J. Urban Health, 88 (2011), 1052-1062.
    [67] Lancet, 375 (2010), 621-622.
    [68] Mathematical Biosciences, 180 (2002), 29-48.
    [69] PLoS ONE, 7 (2012), e41212.
    [70] Journal Of Infectious Diseases, 191 (2005), 1403-1409.
  • This article has been cited by:

    1. Mo’tassem Al-arydah, Robert Smith, Adding Education to “Test and Treat”: Can We Overcome Drug Resistance?, 2015, 2015, 1110-757X, 1, 10.1155/2015/781270
    2. Guillaume Cantin, Cristiana J. Silva, Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models, 2019, 4, 2473-6988, 1145, 10.3934/math.2019.4.1145
    3. Nina T. Harawa, Russell Brewer, Victoria Buckman, Santhoshini Ramani, Aditya Khanna, Kayo Fujimoto, John A. Schneider, HIV, Sexually Transmitted Infection, and Substance Use Continuum of Care Interventions Among Criminal Justice–Involved Black Men Who Have Sex With Men: A Systematic Review, 2018, 108, 0090-0036, e1, 10.2105/AJPH.2018.304698
    4. Sarah T Roberts, Aditya S Khanna, Ruanne V Barnabas, Steven M Goodreau, Jared M Baeten, Connie Celum, Susan Cassels, Estimating the impact of universal antiretroviral therapy for HIV serodiscordant couples through home HIV testing: insights from mathematical models, 2016, 19, 17582652, 20864, 10.7448/IAS.19.1.20864
    5. Wim Delva, Gabriel E. Leventhal, Stéphane Helleringer, Connecting the dots, 2016, 30, 0269-9370, 2009, 10.1097/QAD.0000000000001184
    6. Kevin M. Weiss, Steven M. Goodreau, Martina Morris, Pragati Prasad, Ramya Ramaraju, Travis Sanchez, Samuel M. Jenness, Egocentric sexual networks of men who have sex with men in the United States: Results from the ARTnet study, 2020, 30, 17554365, 100386, 10.1016/j.epidem.2020.100386
    7. Aditya Subhash Khanna, Mert Edali, Jonathan Ozik, Nicholson Collier, Anna Hotton, Abigail Skwara, Babak Mahdavi Ardestani, Russell Brewer, Kayo Fujimoto, Nina Harawa, John A. Schneider, Projecting the number of new HIV infections to formulate the "Getting to Zero" strategy in Illinois, USA, 2021, 18, 1551-0018, 3922, 10.3934/mbe.2021196
    8. Qun Liu, Daqing Jiang, Stationary distribution and extinction of a stochastic multigroup DS-DI-a model for the transmission of HIV, 2022, 40, 0736-2994, 830, 10.1080/07362994.2021.1963776
    9. Anna L. Hotton, Francis Lee, Daniel Sheeler, Jonathan Ozik, Nicholson Collier, Mert Edali, Babak Mahdavi Ardestani, Russell Brewer, Katrina M. Schrode, Kayo Fujimoto, Nina T. Harawa, John A. Schneider, Aditya S. Khanna, Impact of post-incarceration care engagement interventions on HIV transmission among young Black men who have sex with men and their sexual partners: an agent-based network modeling study, 2023, 28, 2667193X, 100628, 10.1016/j.lana.2023.100628
    10. Anna L. Hotton, Pedro Nascimento de Lima, Arindam Fadikar, Nicholson T. Collier, Aditya S. Khanna, Darnell N. Motley, Eric Tatara, Sara Rimer, Ellen Almirol, Harold A. Pollack, John A. Schneider, Robert J. Lempert, Jonathan Ozik, Incorporating social determinants of health into agent-based models of HIV transmission: methodological challenges and future directions, 2025, 5, 2674-1199, 10.3389/fepid.2025.1533119
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2923) PDF downloads(546) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog