Regulation of Th1/Th2 cells in asthma development: A mathematical model

  • Received: 01 November 2012 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 92C45, 92C50; Secondary: 92B05.

  • Airway exposure levels of lipopolysaccharide (LPS) determine type I versus type IIhelper T cell induced experimental asthma. While high LPS levels induce Th1-dominantresponses, low LPS levels derive Th2 cell inducedasthma. The present paper develops a mathematical model of asthma development whichfocuses on the relative balance of Th1 and Th2 cell induced asthma. In the present workwe representthe complex network of interactions between cells and molecules by a mathematical model.The model describes the behaviors of cells (Th0, Th1, Th2 and macrophages)and regulatory molecules (IFN-$\gamma$, IL-4, IL-12, TNF-α) in response tohigh, intermediate, and low levels of LPS.The simulations show howvariations in the levels of injected LPSaffect the development ofTh1 or Th2 cell responses through differential cytokine induction.The model also predicts the coexistence ofthese two types of responseunder certain biochemical and biomechanical conditions in the microenvironment.

    Citation: Yangjin Kim, Seongwon Lee, You-Sun Kim, Sean Lawler, Yong Song Gho, Yoon-Keun Kim, Hyung Ju Hwang. Regulation of Th1/Th2 cells in asthma development: A mathematical model[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1095-1133. doi: 10.3934/mbe.2013.10.1095

    Related Papers:

    [1] Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs. Mathematical Biosciences and Engineering, 2006, 3(4): 661-682. doi: 10.3934/mbe.2006.3.661
    [2] Ming-Xi Zhu, Tian-Yang Zhao, Yan Li . Insight into the mechanism of DNA methylation and miRNA-mRNA regulatory network in ischemic stroke. Mathematical Biosciences and Engineering, 2023, 20(6): 10264-10283. doi: 10.3934/mbe.2023450
    [3] Xin Lin, Xingyuan Li, Binqiang Ma, Lihua Hang . Identification of novel immunomodulators in lung squamous cell carcinoma based on transcriptomic data. Mathematical Biosciences and Engineering, 2022, 19(2): 1843-1860. doi: 10.3934/mbe.2022086
    [4] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [5] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [6] Benjamin Steinberg, Yuqing Wang, Huaxiong Huang, Robert M. Miura . Spatial Buffering Mechanism: Mathematical Model and Computer Simulations. Mathematical Biosciences and Engineering, 2005, 2(4): 675-702. doi: 10.3934/mbe.2005.2.675
    [7] Dasong Huang, Ruiqi Wang . Exploring the mechanism of pancreatic cell fate decisions via cell-cell communication. Mathematical Biosciences and Engineering, 2021, 18(3): 2401-2424. doi: 10.3934/mbe.2021122
    [8] Qian Li, Minawaer Hujiaaihemaiti, Jie Wang, Md. Nazim Uddin, Ming-Yuan Li, Alidan Aierken, Yun Wu . Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. Mathematical Biosciences and Engineering, 2023, 20(2): 4153-4177. doi: 10.3934/mbe.2023194
    [9] Jie Chen, Jinggui Chen, Bo Sun, Jianghong Wu, Chunyan Du . Integrative analysis of immune microenvironment-related CeRNA regulatory axis in gastric cancer. Mathematical Biosciences and Engineering, 2020, 17(4): 3953-3971. doi: 10.3934/mbe.2020219
    [10] Xiaowei Zhang, Jiayu Tan, Xinyu Zhang, Kritika Pandey, Yuqing Zhong, Guitao Wu, Kejun He . Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. Mathematical Biosciences and Engineering, 2024, 21(2): 2407-2431. doi: 10.3934/mbe.2024106
  • Airway exposure levels of lipopolysaccharide (LPS) determine type I versus type IIhelper T cell induced experimental asthma. While high LPS levels induce Th1-dominantresponses, low LPS levels derive Th2 cell inducedasthma. The present paper develops a mathematical model of asthma development whichfocuses on the relative balance of Th1 and Th2 cell induced asthma. In the present workwe representthe complex network of interactions between cells and molecules by a mathematical model.The model describes the behaviors of cells (Th0, Th1, Th2 and macrophages)and regulatory molecules (IFN-$\gamma$, IL-4, IL-12, TNF-α) in response tohigh, intermediate, and low levels of LPS.The simulations show howvariations in the levels of injected LPSaffect the development ofTh1 or Th2 cell responses through differential cytokine induction.The model also predicts the coexistence ofthese two types of responseunder certain biochemical and biomechanical conditions in the microenvironment.


    [1] J. Immunol., 166 (2001), 7556-7562.
    [2] Nat. Med., 8 (2002), 1024-1032.
    [3] J. Clin. Invest., 102 (1998), 98-106.
    [4] J. Allergy Clin. Immunol., 119 (2007), 780-791.
    [5] Prog. Biophys. Mol. Biol., 85 (2004), 451-472.
    [6] Annu. Rev. Physiol., 72 (2010), 495-516.
    [7] Immunity, 27 (2007), 89-99.
    [8] Curr. Opin. HIV AIDS, 5 (2010), 114-119.
    [9] Respir. Res., 2 (2001), 64-65.
    [10] J. Theor. Biol., 190 (1998), 161-178.
    [11] in "Dynamical Modeling In Biotechnology," Lectures Presented at the EU Advanced Workshop, Universität Leipzig NTZ 48/1997, World Scientific, Singapore, (2000), 227-243.
    [12] Curr. Opin. Pharmacol., 7 (2007), 279-282.
    [13] Annu. Rev. Immunol., 12 (1994), 295-335.
    [14] Clin. Pharm., 11 (1992), 834-850.
    [15] JAMA, 295 (2006), 2275-2285.
    [16] Am. J. Respir. Crit. Care Med., 160 (1999), 1816-1823.
    [17] Garland Pub., 2000.
    [18] J. Exp. Med., 186 (1997), 1223-1232.
    [19] Immunology, 115 (2005), 21-33.
    [20] Int. Immunol., 7 (1995), 1265-1277.
    [21] Am. J. Respir. Crit. Care Med., 171 (2005), 224-230.
    [22] Biophys. J., 87 (2004), 2215-2220.
    [23] Allergy, 66 (2011), 989-998.
    [24] J. Allergy Clin. Immunol., 125 (2010), 222-230.
    [25] Histopathology, 2 (1978), 407-421.
    [26] J. Immunol., 170 (2003), 4963-4972.
    [27] Clin. Exp. Metastasis, 18 (2000), 589-597.
    [28] Immunopharmacology, 4 (1982), 23-39.
    [29] J. Exp. Med., 196 (2002), 1645-1651.
    [30] J. Theor. Biol., 160 (1993), 311-342.
    [31] J. Theor. Biol., 170 (1994), 25-56.
    [32] Bull. Math. Biol., 61 (1999), 403-436.
    [33] Proc. Natl. Acad. Sci. USA, 94 (1997), 12258-12262.
    [34] J. Immunol., 166 (2001), 6855-6860.
    [35] Lancet., 355 (2000), 1680-1683.
    [36] Nat. Immunol., 1 (2000), 239-244.
    [37] Am. Rev. Respir. Dis., 139 (1989), 320-329.
    [38] J. Theor. Biol., 269 (2011), 70-78.
    [39] Science, 282 (1998), 2261-2263.
    [40] J. Immunol., 162 (1999), 5212-5223.
    [41] Annu. Rev. Physiol., 71 (2009), 489-507.
    [42] Expert. Rev. Mol. Med., 2 (2000), 1-20.
    [43] J. Neurooncol., 67 (2004), 147-157.
    [44] Journal of Controlled Release, 118 (2007), 161-168.
    [45] Thorax, 60 (2005), 1012-1018.
    [46] Immunol. Cell Biol., 84 (2006), 218-226.
    [47] Immunology and Cell Biology, 85 (2007), 189-196.
    [48] J. Allergy Clin. Immunol., 120 (2007), 803-812.
    [49] Int. Immunol., 10 (1998), 1325-1334.
    [50] Bull. Math. Biol., 72 (2010), 1029-1068.
    [51] J. Theo. Biol., 260 (2009), 359-371.
    [52] 2009 Proceedings of the Fourth SIAM Conference on Mathematics for Industry (MI09), (2010), 84-92.
    [53] J. Immunol., 178 (2007), 5375-5382.
    [54] Progress in Biophysics and Molecular Biology, 106 (2011), 353-379.
    [55] J. Immunol., 183 (2009), 5113-5120.
    [56] J. Math. Biol., 61 (2010), 401-421.
    [57] J. Exp. Med., 186 (1997), 1269-1275.
    [58] J. Math. Biol., 37 (1998), 235-252.
    [59] J. Bacteriology, 89 (1965), 462-469.
    [60] J. Immunol., 171 (2003), 3645-3654.
    [61] Inflamm. Allergy Drug Targets, 5 (2006), 253-256.
    [62] J. Exp. Med., 201 (2005), 233-240.
    [63] Immunity, 30 (2009), 92-107.
    [64] Immunity, 31 (2009), 438-449.
    [65] The Journal of Biological Chemistry, 271 (1996), 16139-16143.
    [66] Proc. Natl. Acad. Sci. USA, 100 (2003), 7749-7754.
    [67] Am. J. Respir. Crit. Care Med., 161 (2000), 1790-1796.
    [68] J. Theor. Biol., 254 (2008), 178-196.
    [69] Allergy, 59 (2004), 469-478.
    [70] Allergy, 55 (2000), 6-9.
    [71] Clin. Exp. Allergy, 21 (1991), 441-448.
    [72] Science, 296 (2002), 1869-1873.
    [73] Allergy, 65 (2010), 1093-1103.
    [74] in "Theoretical and Experimental Insights into Immunology" (eds. A. S. Perelson and G. Weisbuch), chapter H66 Nato ASI, Springer-Verlag, Berlin, Germany, (1992), 171-189.
    [75] Drug Discovery Today: Therapeutic Strategies, 3 (2006), 309-316.
    [76] Exp. Rev. Resp. Med., 1 (2007), 51-63.
    [77] J. Immunol., 136 (1986), 2348-2357.
    [78] Annu. Rev. Immunol., 7 (1989), 145-173.
    [79] J. Biol. Syst., 3 (1995), 397-408.
    [80] In Focus Series, Pharmaceutical Press, 2007.
    [81] $7^{th}$ edition, Garland Science Publishing, New York, 2007.
    [82] Biochemistry, 35 (1996), 11454-11460.
    [83] J. Immunol, 160 (1998), 3705-3712.
    [84] Prog. Clin. Biol. Res., 231 (1987), 475-487.
    [85] Lymphokine Cytokine Res., 12 (1993), 115-120.
    [86] Math. Bios., 136 (1996), 35-63.
    [87] Mucosal. Immunol., 3 (2010), 216-229.
    [88] Journal of Theoretical Medicine, 4 (2002), 119-132.
    [89] Clin. Exp. Allergy., 39 (2009), 1314-1323.
    [90] Immunity, 7 (1997), 123-134.
    [91] Eur. J. Immunol., 30 (2000), 2056-2064.
    [92] Cell, 101 (2000), 455-458.
    [93] Toxicol. in Vitro, 23 (2009), 531-538.
    [94] J. Allergy Clin. Immunol., 104 (1999), 983-990.
    [95] J. Leukoc. Biol., 38 (1985), 383-401.
    [96] J. Theor. Biol., 152 (1991), 377-403.
    [97] Int. J. Mol. Med., 17 (2006), 801-809.
    [98] J. Immunol., 166 (2001), 232-240.
    [99] Immunity, 5 (1996), 217-228.
    [100] J. Math. Biol., 41 (2000), 455-475.
    [101] in "Mathematical Modeling of Biological Systems," Volume II (eds. A. Deutsch, R. Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, and H. Metz), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, (2008), 145-155.
    [102] Immunology, 130 (2010), 166-171.
    [103] J. Exp. Med., 207 (2010), 2479-2491.
    [104] Science, 282 (1998), 2258-2261.
    [105] Nat. Rev. Immunol., 1 (2001), 69-75.
    [106] J. Exp. Med., 191 (2000), 355-364.
    [107] Clin. Exp. Allergy, 40 (2010), 163-173.
    [108] Chest., 138 (2010), 1282-1283.
    [109] J. Theor. Biol., 206 (2000), 539-560.
    [110] J. Theor. Biol., 231 (2004), 181-196.
    [111] Science, 296 (2002), 490-494.
    [112] Int. Arch. Allergy Immunol., 151 (2010), 297-307.
    [113] Nat. Immunol., 8 (2007), 967-974.
    [114] Proc. Natl. Acad. Sci. USA, 94 (1997), 11875-11880.
  • This article has been cited by:

    1. Zhijin Lin, Dan Norback, Tingting Wang, Xin Zhang, Jingjin Shi, Haidong Kan, Zhuohui Zhao, The first 2-year home environment in relation to the new onset and remission of asthmatic and allergic symptoms in 4246 preschool children, 2016, 553, 00489697, 204, 10.1016/j.scitotenv.2016.02.040
    2. Zhikai Wan, Zhifeng Zhou, Yao Liu, Yuhan Lai, Yuan Luo, Xiaoping Peng, Wei Zou, Regulatory T cells and T helper 17 cells in viral infection, 2020, 91, 0300-9475, 10.1111/sji.12873
    3. T Karelina, V Voronova, O Demin, G Colice, BM Agoram, A Mathematical Modeling Approach to Understanding the Effect of Anti‐Interleukin Therapy on Eosinophils, 2016, 5, 2163-8306, 608, 10.1002/psp4.12129
    4. Amit Kumar Roy, Priti Kumar Roy, 2020, Chapter 15, 978-981-15-0927-8, 313, 10.1007/978-981-15-0928-5_15
    5. Nicoline Y. den Breems, Raluca Eftimie, The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes, 2016, 390, 00225193, 23, 10.1016/j.jtbi.2015.10.034
    6. Akane Hara, Yoh Iwasa, When is allergen immunotherapy effective?, 2017, 425, 00225193, 23, 10.1016/j.jtbi.2017.04.030
    7. Junehyuk Lee, Frederick R. Adler, Peter S. Kim, A Mathematical Model for the Macrophage Response to Respiratory Viral Infection in Normal and Asthmatic Conditions, 2017, 79, 0092-8240, 1979, 10.1007/s11538-017-0315-0
    8. Jong Chul Han, Da Ye Choi, Changwon Kee, The Different Characteristics of Cirrus Optical Coherence Tomography between Superior Segmental Optic Hypoplasia and Normal Tension Glaucoma with Superior Retinal Nerve Fiber Defect, 2015, 2015, 2090-004X, 1, 10.1155/2015/641204
    9. Parya Aghasafari, Uduak George, Ramana Pidaparti, A review of inflammatory mechanism in airway diseases, 2019, 68, 1023-3830, 59, 10.1007/s00011-018-1191-2
    10. Guilherme Costa Silva, Walmir Matos Caminhas, Reinaldo Martinez Palhares, Artificial immune systems applied to fault detection and isolation: A brief review of immune response-based approaches and a case study, 2017, 57, 15684946, 118, 10.1016/j.asoc.2017.03.031
    11. PRITI KUMAR ROY, AMIT KUMAR ROY, EVGENII N. KHAILOV, FAHAD AL BASIR, ELLINA V. GRIGORIEVA, A MODEL OF THE OPTIMAL IMMUNOTHERAPY OF PSORIASIS BY INTRODUCING IL-10 AND IL-22 INHIBITORS, 2020, 28, 0218-3390, 609, 10.1142/S0218339020500084
    12. Wenchao Tang, Yi Shang, Bin Xiao, Peitong Wen, Ruoyun Lyu, Ke Ning, The Cell Research Trends of Asthma: A Stem Frequency Analysis of the Literature, 2018, 2018, 2040-2295, 1, 10.1155/2018/9363820
    13. V.V Zheltkova, D.A. Zheltkov, G.A. Bocharov, Modelling HIV infection: model identification and global sensitivity analysis, 2019, 14, 19946538, 19, 10.17537/2019.14.19
    14. Abazar Arabameri, Davud Asemani, Jamshid Hadjati, A structural methodology for modeling immune-tumor interactions including pro- and anti-tumor factors for clinical applications, 2018, 304, 00255564, 48, 10.1016/j.mbs.2018.07.006
    15. D. A. Serov, D. S. Kabanov, N. I. Kosyakova, I. R. Prokhorenko, INFLUENCE OF THERAPY UPON LPS-INDUCED CYTOKINE SECRETION BY THE BLOOD-DERIVED INNATE IMMUNITY CELLS OF THE BRONCHIAL ASTHMA PATIENTS, 2019, 21, 2313-741X, 789, 10.15789/1563-0625-2019-4-789-796
    16. Yangjin Kim, Seongwon Lee, Jisun Lim, Hopf bifurcation in a model of TGF-$\beta$ in regulation of the Th 17 phenotype, 2016, 21, 1531-3492, 3575, 10.3934/dcdsb.2016111
    17. Raluca Eftimie, Haneen Hamam, Modelling and investigation of theCD4+T cells – Macrophages paradox in melanoma immunotherapies, 2017, 420, 00225193, 82, 10.1016/j.jtbi.2017.02.022
    18. Yingshui Yao, Lijun Zhu, Jie Li, Yuelong Jin, Lianping He, Association of HLA-DRB1 Gene Polymorphism with Risk of Asthma: A Meta-Analysis, 2016, 22, 2325-4416, 80, 10.12659/MSMBR.900193
    19. Chia-Chen Hsieh, Keng-Fan Liu, Pei-Chun Liu, Yaw-Tsan Ho, Wei-Sung Li, Wen-Huang Peng, Jen-Chieh Tsai, Comparing the Protection Imparted by Different Fraction Extracts of Garlic (Allium sativum L.) against Der p–Induced Allergic Airway Inflammation in Mice, 2019, 20, 1422-0067, 4879, 10.3390/ijms20194879
    20. Shinji Nakaoka, Sota Kuwahara, Chang Lee, Hyejin Jeon, Junho Lee, Yasuhiro Takeuchi, Yangjin Kim, Chronic Inflammation in the Epidermis: A Mathematical Model, 2016, 6, 2076-3417, 252, 10.3390/app6090252
    21. Sarah B. Minucci, Rebecca L. Heise, Angela M. Reynolds, Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries, 2020, 6, 2297-4687, 10.3389/fams.2020.00036
    22. Belen Tirado-Rodriguez, Guillermina Baay-Guzman, Rogelio Hernandez-Pando, Gabriela Antonio-Andres, Mario I. Vega, Leticia Rocha-Zavaleta, Laura C. Bonifaz, Sara Huerta-Yepez, Inhibition of tumor progression during allergic airway inflammation in a murine model: significant role of TGF-β, 2015, 64, 0340-7004, 1205, 10.1007/s00262-015-1722-4
    23. Seongwon Lee, Se-woong Kim, Youngmin Oh, Hyung Ju Hwang, Mathematical modeling and its analysis for instability of the immune system induced by chemotaxis, 2017, 75, 0303-6812, 1101, 10.1007/s00285-017-1108-7
    24. Takuya Miyano, Alan D. Irvine, Reiko J. Tanaka, A mathematical model to identify optimal combinations of drug targets for dupilumab poor responders in atopic dermatitis, 2021, 0105-4538, 10.1111/all.14870
    25. Li Huang, Xinxing Zhang, Meijuan Wang, Zhengrong Chen, Yongdong Yan, Wenjing Gu, Jiahong Tan, Wujun Jiang, Wei Ji, Exosomes from Thymic Stromal Lymphopoietin-Activated Dendritic Cells Promote Th2 Differentiation through the OX40 Ligand, 2019, 86, 1015-2008, 111, 10.1159/000493013
    26. Changwook Yoon, Sewoong Kim, Hyung Ju Hwang, Global well-posedness and pattern formations of the immune system induced by chemotaxis, 2020, 17, 1551-0018, 3426, 10.3934/mbe.2020194
    27. Nita H. Shah, Ankush H. Suthar, Moksha H. Satia, Ekta N. Jayswal, Foram A. Thakkar, Z-control on dynamics of pollution-allergy model, 2021, 36, 1005-1031, 583, 10.1007/s11766-021-4411-4
    28. elnaz kalhor, amin noori, Jalil Tavakol Afshari, sara Saboori Rad, Modeling for the body defense mechanisms in stage I melanoma patient and sensitivity analysis by using Partial Rank Correlation Coefficient (PRCC) method, 2021, 15, 2008-8345, 159, 10.52547/joc.15.2.159
    29. Nusrat Saba, Ghazala Kaukab Raja, Osman Yusuf, Sadia Rehman, Saeeda Munir, Sumaira Sajjad, Atika Mansoor, Study of HLA class II loci reveals DQB1*03:03:02 as a risk factor for asthma in a Pakistani population , 2022, 49, 1744-3121, 372, 10.1111/iji.12602
    30. Yuhan ZHANG, Mengnan ZENG, Benke LI, Beibei ZHANG, Bing CAO, Yuanyuan WU, Shan YE, Ruiqi XU, Xiaoke ZHENG, Weisheng FENG, Ephedra Herb extract ameliorates adriamycin-induced nephrotic syndrome in rats via the CAMKK2/AMPK/mTOR signaling pathway, 2023, 21, 18755364, 371, 10.1016/S1875-5364(23)60454-6
    31. Anh Tuan Tran, Anh Duc Truong, Dung Thi Kim Nguyen, Hung Tuan Nguyen, Thanh Thuy Nguyen, Ha Thi Thanh Tran, Hoang Vu Dang, Biological properties and diverse cytokine profiles followed by in vitro and in vivo infections with LSDV strain isolated in first outbreaks in Vietnam, 2023, 0165-7380, 10.1007/s11259-023-10158-2
    32. Isaki Yamamoto, Hiroyuki Torikai, 2024, A Novel Ergodic Cellular Automaton Asthma Model: Reproductions of Nonlinear Dynamics of Asthma and Efficient FPGA Implementation, 979-8-3503-3099-1, 1, 10.1109/ISCAS58744.2024.10558560
    33. Hannah J. Pybus, Prakrati Dangarh, Man Yin Melanie Ng, Clare M. Lloyd, Sejal Saglani, Reiko J. Tanaka, Mechanistic modelling of allergen-induced airways disease in early life, 2025, 15, 2045-2322, 10.1038/s41598-024-83204-x
    34. Yuna Kotsubo, Akane Hara, Rena Hayashi, Yoh Iwasa, Age-dependence of food allergy due to decreased supply of naïve T cells, 2025, 602-603, 00225193, 112060, 10.1016/j.jtbi.2025.112060
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4116) PDF downloads(875) Cited by(34)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog