Modeling shrimp biomass and viral infection for production of biological countermeasures

  • Received: 01 December 2005 Accepted: 29 June 2018 Published: 01 August 2006
  • MSC : 92D25, 92D30, 35L60, 65M06.

  • In this paper we develop a mathematical model for the rapid production of large quantities of therapeutic and preventive countermeasures. We couple equations for biomass production with those for vaccine production in shrimp that have been infected with a recombinant viral vector expressing a foreign antigen. The model system entails both size and class-age structure.

    Citation: H. Thomas Banks, V. A. Bokil, Shuhua Hu, A. K. Dhar, R. A. Bullis, C. L. Browdy, F.C.T. Allnutt. Modeling shrimp biomass and viral infection for production of biological countermeasures[J]. Mathematical Biosciences and Engineering, 2006, 3(4): 635-660. doi: 10.3934/mbe.2006.3.635

    Related Papers:

    [1] Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
    [2] Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044
    [3] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [4] Patrick W. Nelson, Michael A. Gilchrist, Daniel Coombs, James M. Hyman, Alan S. Perelson . An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells. Mathematical Biosciences and Engineering, 2004, 1(2): 267-288. doi: 10.3934/mbe.2004.1.267
    [5] Damilola Olabode, Libin Rong, Xueying Wang . Optimal control in HIV chemotherapy with termination viral load and latent reservoir. Mathematical Biosciences and Engineering, 2019, 16(2): 619-635. doi: 10.3934/mbe.2019030
    [6] Nada Almuallem, Dumitru Trucu, Raluca Eftimie . Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: A mathematical approach. Mathematical Biosciences and Engineering, 2021, 18(1): 764-799. doi: 10.3934/mbe.2021041
    [7] Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang . The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences and Engineering, 2009, 6(2): 283-299. doi: 10.3934/mbe.2009.6.283
    [8] Jinhu Xu . Dynamic analysis of a cytokine-enhanced viral infection model with infection age. Mathematical Biosciences and Engineering, 2023, 20(5): 8666-8684. doi: 10.3934/mbe.2023380
    [9] Andrea Bondesan, Antonio Piralla, Elena Ballante, Antonino Maria Guglielmo Pitrolo, Silvia Figini, Fausto Baldanti, Mattia Zanella . Predictability of viral load dynamics in the early phases of SARS-CoV-2 through a model-based approach. Mathematical Biosciences and Engineering, 2025, 22(4): 725-743. doi: 10.3934/mbe.2025027
    [10] Miguel Ángel Rodríguez-Parra, Cruz Vargas-De-León, Flaviano Godinez-Jaimes, Celia Martinez-Lázaro . Bayesian estimation of parameters in viral dynamics models with antiviral effect of interferons in a cell culture. Mathematical Biosciences and Engineering, 2023, 20(6): 11033-11062. doi: 10.3934/mbe.2023488
  • In this paper we develop a mathematical model for the rapid production of large quantities of therapeutic and preventive countermeasures. We couple equations for biomass production with those for vaccine production in shrimp that have been infected with a recombinant viral vector expressing a foreign antigen. The model system entails both size and class-age structure.


  • This article has been cited by:

    1. H T Banks, Jimena L Davis, Stacey L Ernstberger, Shuhua Hu, Elena Artimovich, Arun K Dhar, Experimental design and estimation of growth rate distributions in size-structured shrimp populations, 2009, 25, 0266-5611, 095003, 10.1088/0266-5611/25/9/095003
    2. H. T. Banks, Jimena L. Davis, Shuhua Hu, 2010, Chapter 2, 978-3-642-11277-5, 19, 10.1007/978-3-642-11278-2_2
    3. H. T. Banks, J. L. Davis, S. L. Ernstberger, Shuhua Hu, E. Artimovich, A. K. Dhar, C. L. Browdy, A comparison of probabilistic and stochastic formulations in modelling growth uncertainty and variability, 2009, 3, 1751-3758, 130, 10.1080/17513750802304877
    4. Nonlinear stochastic Markov processes and modeling uncertainty in populations, 2012, 9, 1551-0018, 1, 10.3934/mbe.2012.9.1
    5. H.T. Banks, W. Clayton Thompson, Mathematical Models of Dividing Cell Populations: Application to CFSE Data, 2012, 7, 0973-5348, 24, 10.1051/mmnp/20127504
    6. Áron Fehér, Lőrinc Márton, 2023, Approximation Based H∞ Control of Linear Systems with State Delays, 978-89-93215-27-4, 115, 10.23919/ICCAS59377.2023.10316986
    7. H. Banks, Stacey Ernstberger, Shuhua Hu, Sensitivity equations for a size-structured population model, 2009, 67, 0033-569X, 627, 10.1090/S0033-569X-09-01105-1
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2385) PDF downloads(488) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog