Research article

Some novel fixed point theorems in partially ordered metric spaces

  • Received: 03 December 2019 Accepted: 07 May 2020 Published: 13 May 2020
  • MSC : 46TXX, 47H10, 54H25

  • Our aim in this communication is to present a new type of contraction and common fixed point results for non-continuous self mappings without using the compatibility and commutative property. Moreover, we have found common fixed point without using the Cauchy's criterion for convergence. Some illustrative examples with graphical representation and remarks are given to justify that the contraction introduced in the main result is new and unique, which will be useful for future researches.

    Citation: Vishal Gupta, Gerald Jungck, Naveen Mani. Some novel fixed point theorems in partially ordered metric spaces[J]. AIMS Mathematics, 2020, 5(5): 4444-4452. doi: 10.3934/math.2020284

    Related Papers:

  • Our aim in this communication is to present a new type of contraction and common fixed point results for non-continuous self mappings without using the compatibility and commutative property. Moreover, we have found common fixed point without using the Cauchy's criterion for convergence. Some illustrative examples with graphical representation and remarks are given to justify that the contraction introduced in the main result is new and unique, which will be useful for future researches.


    加载中


    [1] P. Borisut, K. Khammahawong, P. Kumam, Fixed point theory approach to existence of solutions with differential equations, In: Differential Equations: Theory and Current Research, Intech Open, London, UK, 2018.
    [2] P. Borisut, P. Kumam, V. Gupta, et al. Generalized (ψ, α, β)-weak contractions for initial value problems, Mathematics, 7 (2019), 1-14.
    [3] L. A. Alnaser, J. Ahmad, D. Lateef, et al. New fixed point theorems with applications to non-linear neutral differential equations, Symmetry, 11 (2019), 1-11.
    [4] N. Mani, Generalized $C^\psi_\beta$-rational contraction and fixed point theorem with application to second order differential equation, Math. Morav., 22 (2018), 43-54. doi: 10.5937/MatMor1801043M
    [5] E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 1-25. doi: 10.1186/s13662-018-1939-6
    [6] V. Gupta, N. Mani, N. Sharma, Fixed-point theorems for weak (ψ, β)-mappings satisfying generalized C-condition and its application to boundary value problem, Comput. Math. Method., 1 (2019), 1-12.
    [7] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181
    [8] V. Gupta, N. Mani, A. K. Tripathi, A fixed point theorem satisfying a generalized weak contractive condition of integral type, Int. J. Math. Anal., 6 (2012), 1883-1889.
    [9] V. gupta, N. Mani, Existence and uniqueness of fixed point for contractive mapping of integral type, Int. J. Comput. Sci. Math., 4 (2013), 72-83. doi: 10.1504/IJCSM.2013.054685
    [10] M. S. Khan, M. Swalesh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1-9. doi: 10.1017/S0004972700001659
    [11] B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., 12 (1975), 1455-1458.
    [12] B. G. Pachpatte, Common fixed point theorems for mappings satisfying rational inequalities, Indian J. Pure Appl. Math., 10 (1979), 1362-1368.
    [13] L. B. Ciric, A certain class of maps and fixed point theorems, Publ. Inst. Math., 20 (1976), 73-77.
    [14] B. Fisher, Common fixed point and constant mapping satisfying rational inequality, Math. Sem. Notes, Kobe Univ., 5 (1977), 319-326.
    [15] G. Jungck, Commuting mappings and fixed points, Am. Math. Mon., 83 (1976), 261-263. doi: 10.1080/00029890.1976.11994093
    [16] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. I. Math., 32 (1982), 149-153.
    [17] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771-779. doi: 10.1155/S0161171286000935
    [18] V. Gupta, N. Mani Common fixed point for two self-maps satisfying a generalized $^\psi \int_\varphi$-weakly contractive condition of integral type, Int. J. Nonlinear Sci., 16 (2013), 64-71.
    [19] A. A. Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., 72 (2010), 2238-2242. doi: 10.1016/j.na.2009.10.023
    [20] M. E. Gordji, H. Baghani, G. H. Kim, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Discrete Dyn. Nat. Soc., 2012 (2012), 1-8.
    [21] J. J. Nieto, R. Rodriguez-lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sinica., 23 (2007), 2205-2212. doi: 10.1007/s10114-005-0769-0
    [22] J. J. Nieto, R. L. Pouso, R. Rodriguez-lopez, Fixed point theorems in ordered abstract spaces, P. Am. Math. Soc., 135 (2007), 2505-2517. doi: 10.1090/S0002-9939-07-08729-1
    [23] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, P. Am. Math. Soc., 132 (2004), 1435-1443. doi: 10.1090/S0002-9939-03-07220-4
    [24] J. J. Nieto, R. Rodriguez-lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2008), 223-239.
    [25] L. B. Ciric, N. Cakic, M. Rajovic, et al. Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory A., 2008 (2008), 1-11.
    [26] H. K. Nashine, Z. Kadelburg, S. Radenovic, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Model., 57 (2013), 2355-2365. doi: 10.1016/j.mcm.2011.12.019
    [27] R. P. Agarwal, M. A. El-Gebeily, D. O. Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109-116. doi: 10.1080/00036810701556151
    [28] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory A., 2010 (2010), 1-17.
    [29] H. K. Nashine, B. Samet, Fixed point result mappings satisfying $(\psi, \varphi)$-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 2201-2209. doi: 10.1016/j.na.2010.11.024
    [30] V. Gupta, N. M. Ramandeep, A. K. Tripathi, Some fixed point result involving generalized altering distance function, Procedia Comput. Sci., 79 (2016), 112-117. doi: 10.1016/j.procs.2016.03.015
    [31] V. Gupta, W. Shatanawi, N. Mani, Fixed point theorems for (ψ, β) - Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations, J. Fix. Point Theory A., 19 (2017), 1251-1267. doi: 10.1007/s11784-016-0303-2
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4402) PDF downloads(496) Cited by(12)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog