Research article

Involution on prime rings with endomorphisms

  • Received: 08 November 2019 Accepted: 16 February 2020 Published: 27 March 2020
  • MSC : 16N60, 16W10, 16W25

  • Let $\mathcal{R}$ be a prime ring with involution $'*'$ and $\psi: \mathcal{R} \rightarrow \mathcal{R}$ be an endomorphism on $\mathcal{R}$. In this article, we study the action of involution $'*', $ and the effect of endomorphism $\psi$ satisfying $[\psi(x), \psi(x^*)]-[x, x^*]\in \mathcal{Z}(\mathcal{R})$ for all $x\in \mathcal{R}$. In particular, we prove that any centralizing involution on prime rings with involution of characteristic different from two is of the first kind or $\mathcal{R}$ satisfies $s_4$, the standard polynomial identity in four variables. Further, we establish that if a prime ring $\mathcal{R}$ with involution of characteristic different from two admits a non-trivial endomorphism $\psi$ such that $[\psi(x), \psi(x^*)]-[x, x^*]\in \mathcal{Z}(\mathcal{R})$ for all $x\in \mathcal{R}$, then the involution is of the first kind or $\mathcal{R}$ satisfies $s_4$ and $[\psi(x), x] = 0$ for all $x\in \mathcal{R}$.

    Citation: Abdul Nadim Khan, Shakir Ali. Involution on prime rings with endomorphisms[J]. AIMS Mathematics, 2020, 5(4): 3274-3283. doi: 10.3934/math.2020210

    Related Papers:

  • Let $\mathcal{R}$ be a prime ring with involution $'*'$ and $\psi: \mathcal{R} \rightarrow \mathcal{R}$ be an endomorphism on $\mathcal{R}$. In this article, we study the action of involution $'*', $ and the effect of endomorphism $\psi$ satisfying $[\psi(x), \psi(x^*)]-[x, x^*]\in \mathcal{Z}(\mathcal{R})$ for all $x\in \mathcal{R}$. In particular, we prove that any centralizing involution on prime rings with involution of characteristic different from two is of the first kind or $\mathcal{R}$ satisfies $s_4$, the standard polynomial identity in four variables. Further, we establish that if a prime ring $\mathcal{R}$ with involution of characteristic different from two admits a non-trivial endomorphism $\psi$ such that $[\psi(x), \psi(x^*)]-[x, x^*]\in \mathcal{Z}(\mathcal{R})$ for all $x\in \mathcal{R}$, then the involution is of the first kind or $\mathcal{R}$ satisfies $s_4$ and $[\psi(x), x] = 0$ for all $x\in \mathcal{R}$.


    加载中


    [1] S. Ali, N. A. Dar, On *-centralizing mappings in rings with involution, Georgian Math. J., 21 (2014), 25-28.
    [2] S. Ali, N. A. Dar, On centralizers of prime rings with involution, Bull. Iranian Math. Soc., 41 (2015), 1465-1475.
    [3] S. Ali, N. A. Dar, A. N. Khan, On strong commutativity preserving like maps in rings with involution, Miskolc Math. Notes, 16 (2015), 17-24. doi: 10.18514/MMN.2015.1297
    [4] H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Can. Math. Bull., 37 (1994), 443-447. doi: 10.4153/CMB-1994-064-x
    [5] H. E. Bell, G. Mason, On derivations in near rings and rings, Math. J. Okayama Univ., 34 (1992), 135-144.
    [6] M. Brešar, Commuting maps: a survey, Taiwanese J. Math., 8 (2004), 361-397. doi: 10.11650/twjm/1500407660
    [7] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394. doi: 10.1006/jabr.1993.1080
    [8] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, T. Am. Math. Soc., 335 (1993), 525-546. doi: 10.1090/S0002-9947-1993-1069746-X
    [9] M. Brešar, C. R. Miers, Strong commutativity preserving mappings of semiprime rings, Can. Math. Bull., 37 (1994), 457-460. doi: 10.4153/CMB-1994-066-4
    [10] M. Brešar, C. R. Miers, Strong commutativity preserving maps of semiprime rings, Can. Math. Bull., 37 (1994), 457-460. doi: 10.4153/CMB-1994-066-4
    [11] N. A. Dar, S. Ali, On *-commuting mapping and derivations in rings with involution, Turk. J. Math., 40 (2016), 884-894. doi: 10.3906/mat-1508-61
    [12] N. A. Dar, A. N. Khan, Generalized derivations on rings with involution, Algebr. Colloq., 24 (2017), 393-399. doi: 10.1142/S1005386717000244
    [13] Q. Deng, M. Ashraf, On strong commutativity preserving maps, Results Math., 30 (1996), 259-263. doi: 10.1007/BF03322194
    [14] V. De Fillipis, G. Scudo, Strong commutativity and Engel condition preserving maps in prime and semiprime rings, Linear and Multilinear Algebra, 61 (2013), 917-938. doi: 10.1080/03081087.2012.716433
    [15] I. N. Herstein, A note on derivations II, Can. Math. Bull., 22 (1979), 509-511. doi: 10.4153/CMB-1979-066-2
    [16] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
    [17] T. K. Lee, T. L. Wong, Nonadditive strong commutativity preserving maps, Comm. Algebra, 40 (2012), 2213-2218. doi: 10.1080/00927872.2011.578287
    [18] T. K. Lee, P. H. Lee, Derivations centralzing symmetric or skew symmetric elements, Bull. Inst. Math., 14 (1986), 249-256.
    [19] P. K. Liu, C. K. Liau, Strong commutativity preserving generalized derivations on Lie ideals, Linear Multilinear Algebra, 59 (2011), 905-915. doi: 10.1080/03081087.2010.535819
    [20] P. K. Liau, W. L. Huang, C. K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl., 436 (2012), 3099-3108. doi: 10.1016/j.laa.2011.10.014
    [21] C. K. Liu, Strong commutativity preserving maps on subsets of matrices that are not closed under addition, Linear Algebra Appl., 458 (2014), 280-290. doi: 10.1016/j.laa.2014.06.003
    [22] C. K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math., 166 (2012), 453-465. doi: 10.1007/s00605-010-0281-1
    [23] C. K. Liu, On Skew derivations in semiprime Rings, Algebra Represent Th., 16 (2013), 1561-1576. doi: 10.1007/s10468-012-9370-2
    [24] J. S. Lin, C. K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl., 428 (2008), 1601-1609. doi: 10.1016/j.laa.2007.10.006
    [25] J. S. Lin, C. K. Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl., 432 (2010), 14-23. doi: 10.1016/j.laa.2009.06.036
    [26] A. Mamouni, L. Oukhtite, H. Elmir, New classes of endomorphisms and some classification theorems, Comm. Algebra, 48 (2020), 71-82. doi: 10.1080/00927872.2019.1632330
    [27] A. Mamouni, L. Oukhtite, B. Nejjar, et al. Some commutativity criteria for prime rings with differential identities on Jordan ideals, Comm. Algebra, 47 (2019), 355-361. doi: 10.1080/00927872.2018.1477945
    [28] A. Mamouni, B. Nejjar, L. Oukhtite, Differential identities on prime rings with involution, J. Algebra Appl., 17 (2018), 1850163. doi: 10.1142/S0219498818501633
    [29] B. Nejjar, A. Kacha, A. Mamouni, et al. Commuatitivity theorems in rings with involution, Comm. Algebra, 45 (2016), 698-708. doi: 10.1080/00927872.2016.1172629
    [30] J. Ma, X. W. Xu, F. W. Niu, Strong commutativity preserving generalized derivations on semiprime rings, Acta Math. Sin., 24 (2008), 1835-1842. doi: 10.1007/s10114-008-7445-0
    [31] X. Qi, J. Hou, Strong commutativity presrving maps on triangular rings, Oper. Matrices, 6 (2012), 147-158. doi: 10.7153/oam-06-10
    [32] P. Šemrl, Commutativity preserving maps, Linear Algebra Appl., 429 (2008), 1051-1070. doi: 10.1016/j.laa.2007.05.006
    [33] W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl., 14 (1976), 29-35. doi: 10.1016/0024-3795(76)90060-4
    [34] O. A. Zemani, L. Oukhtite, S. Ali, et al. On certain classes of generalized derivations, Math. Slovaca., 69 (2019), 1023-1032. doi: 10.1515/ms-2017-0286
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3608) PDF downloads(371) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog