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Abstract: Let R be a prime ring with involution ′∗′ and ψ : R → R be an endomorphism on R.
In this article, we study the action of involution ′∗′, and the effect of endomorphism ψ satisfying
[ψ(x), ψ(x∗)] − [x, x∗] ∈ Z(R) for all x ∈ R. In particular, we prove that any centralizing involution
on prime rings with involution of characteristic different from two is of the first kind or R satisfies
s4, the standard polynomial identity in four variables. Further, we establish that if a prime ring R
with involution of characteristic different from two admits a non-trivial endomorphism ψ such that
[ψ(x), ψ(x∗)] − [x, x∗] ∈ Z(R) for all x ∈ R, then the involution is of the first kind or R satisfies s4 and
[ψ(x), x] = 0 for all x ∈ R.
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1. Introduction

This research has been motivated by the recent work’s of authors [1, 13]. In what follows, R is an
associative ring with Z(R) the center of R, C the extended centroid of a prime ring R(see [16] for
details). A ring R is said to be n-torsion free, if for x ∈ R, nx = 0 implies x = 0, where n ≥ 2 is an
integer. A ring R is called a prime ring if aRb = (0) (where a, b ∈ R) implies a = 0 or b = 0. As
usual, [x, y] and x◦y will denote the commutator xy−yx and the anti-commutator xy+yx, respectively.
We shall use the following basic identities related to commutators and anti-commutators:[xy, z] =

x[y, z] + [x, z]y and [x, yz] = [x, y]z + y[x, z] for all x, y, z ∈ R. Moreover, xo(yz) = (xoy)z − y[x, z] =

y(x ◦ z) + [x, y]z and (xy)oz = (xoz)y + x[y, z] = x(y ◦ z)− [x, z]y for all x, y, z ∈ R. An additive mapping
d : R → R is said to be a derivation on R if d(xy) = d(x)y + xd(y) for all x, y ∈ R. A derivation d is said
to be inner if there exists a ∈ R such that d(x) = [a, x] for all x ∈ R. Following [16], an additive map
x 7→ x∗ of R into itself is called an involution if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x hold for all x ∈ R.
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A ring equipped with involution is called ring with involution or ∗-ring. An element x in a ring with
involution is said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x. The sets of all hermitian
and skew-hermitian elements of R will be denoted by H(R) and S (R), respectively. The involution is
said to be of the first kind if H(R) ⊆ Z(R), otherwise it is said to be of the second kind. We say that
involution ′∗′ is a centralizing (resp. commuting) if [x, x∗] ∈ Z(R) (resp. [x, x∗] = 0) for all x ∈ R.
We refer the reader to [16] for justification and amplification for the above mentioned notations and
key definitions. We say that a map f : R → R preserves commutativity if [ f (x), f (y)] = 0 whenever
[x, y] = 0 for all x, y ∈ R. The study of commutativity preserving mappings has been an active research
area in matrix theory, operator theory and ring theory (see [6, 32] for references). Following [9], let
S be a subset of R, a map f : S → R is said to be strong commutativity preserving (SCP) on S if
[ f (x), f (y)] = [x, y] for all x, y ∈ S. The standard polynomial identity s4 in four variables is defined
as s4(x1, x2, x3, x4) =

∑
σ∈S 4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4), where (−1)σ is +1 or −1 according to σ being an
even or odd permutation in symmetric group S 4.

In the beginning of nineties, after the development of the theory of centralizing and commuting
maps, Brešar [8] started the characterization of centralizing, commuting and commutativity preserving
maps. Moreover, he established some classical theorems (see for example [6,7] and references their in).
Commutativity preserving maps first introduced by Watkins [33] and extended to strong commutativity
preserving maps by Bell and Mason [5]. Inspired by their works, Bell and Daif [4] demonstrated the
commutativity of prime and semiprime rings admitting derivations and endomorphisms, which satisfy
the strong commutativity preserving maps on right ideals (see also [30,31] for details). In 1994, Brešar
and Miers [9] characterized an additive map f : R → R satisfying SCP on semiprime ring R and
showed that f is of the form f (x) = λx + µ(x) for all x ∈ R, λ ∈ C, λ2 = 1 and µ : R → C is an
additive map, where C is the extended centroid of R. Later, Lin and Liu [24] extended this result to
Lie ideals of prime rings. Chasing to this, several techniques have been developed to investigate the
behavior of SCP maps using restrictions on polynomials, invoking derivations, generalized derivations
etcetera. The related results concerning these maps on prime and semiprime rings can be found in
[13, 14, 17, 19–23, 25, 31], where further references can be obtained.

The study of additive maps in rings with involution was initiated by Brešar et al. (see [10] for
more details) to describe the centralizing maps on the skew-symmetric elements in prime rings. In
the same vein, Lin and Liu [25] characterized SCP maps on skew symmetric elements of prime rings
with involution. Later Liau et al. [20] improved above mentioned result for non additive SCP maps.
Interestingly, in the year 2015, the authors together with Dar [3] studied the SCP maps in different
way for prime rings with involution. For instance, they established the following: Let R be a prime
ring with involution of the second kind such that char(R) , 2. Let δ be a nonzero derivation of R
such that [δ(x), δ(x∗)] − [x, x∗] = 0 for all x ∈ R, then R is commutative. Recently, Dar and Khan [12]
extended this result for generalized derivations (see also [2, 11, 26–29, 34] for some recent results in
rings with involution). In [13], Deng and Ashraf studied SCP maps in the case of endomorphisms
without involution. To be precise, they proved the following result:
Theorem 1.1 Let R ba a prime ring with characteristic different from two. Suppose that ψ : R → R
is a non-trivial endomorphism on R such that [ψ(x), ψ(y)] − [x, y] ∈ Z(R) for all x, y ∈ R. Then R is
commutative.

In view of Theorem 1.1 just mentioned above, it is natural to ask a question. What happens if we
take x∗ in place of y in this result ? The main purpose of this paper is to answer the above mentioned
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question. Precisely, we prove that if a prime ring R with involution of characteristic different from
two admits a non-trivial endomorphism ψ such that [ψ(x), ψ(x∗)] − [x, x∗] ∈ Z(R) for all x ∈ R, then
the involution is of the first kind or R satisfies s4 and [ψ(x), x] = 0 for all x ∈ R. In order to give the
complete answer to a question just mentioned above, first we need to prove that any centralizing (resp.
commuting) involution on s4-torsion free prime ring is of the first kind. Finally, we conclude the paper
with some open problems.

2. The results

Inspired from above mentioned result, we prove the following theorems in the setting of rings with
involution.
Theorem 2.1 Let R be a prime ring with involution of characteristic different from two. If ψ is a
non-trivial endomorphism on R such that [ψ(x), ψ(x∗)] − [x, x∗] ∈ Z(R) for all x ∈ R, then the
involution is of the first kind or R satisfies s4 and [ψ(x), x] = 0 for all x ∈ R.

Theorem 2.2 Let R be a prime ring with involution of characteristic different from two. If ψ is a
non-trivial endomorphism on R such that [ψ(x), ψ(x∗)] − (x ◦ x∗) ∈ Z(R) for all x ∈ R, then the
involution is of the first kind or R satisfies s4.

Corollary 2.3 Let R be a prime ring with involution of characteristic different from two. If ψ is a
non-trivial endomorphism on R such that [ψ(x), ψ(y)] − (x ◦ y) ∈ Z(R) for all x, y ∈ R, then the
involution is of the first kind or R satisfies s4.

The proof of main theorems is based on the key Proposition 2.4 below. In proof of Proposition 2.4,
we will use the theory of commuting and centralizing maps, studied and given by Brešar (viz.; [6–8]
and references therein). We refer the reader to [7] for introductory account on the theory of
commuting and centralizing maps. For full treatment on this theory we refer the reader to [6]. We
begin with our first result which is motivated by the result proved in [1, 11], respectively. The proof of
our first proposition relies heavily on the classical theorem and techniques due to Brešar [7], although
we have attempted to make our exposition as self-contained as possible. In particular, in Proposition
2.4 below, we adapt Brešar’s argument [7, Theorem 3.2] and characterizes centralizing involution of
prime rings. We begin with the following propositions which are necessary for establishment of the
proofs of our main results of the present paper.

Proposition 2.4 Let R be a prime ring with involution of characteristic different from two. If
[x, x∗] ∈ Z(R) for all x ∈ R, then the involution is of the first kind or R satisfies s4.

Proof. By the assumption, we have

[x, x∗] ∈ Z(R) (2.1)

for all x ∈ R. In view of [7, Theorem 3.2], there exists λ ∈ C and an additive map ξ : R → C such that

x∗ = λx + ξ(x) (2.2)
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for all x ∈ R. Taking x∗ = x in (2.2), we get

x = λx∗ + ξ(x∗) (2.3)

for all x ∈ R. Application of (2.2) yields

x = λ(λx + ξ(x)) + ξ(x∗) = λ2x + λξ(x) + ξ(x∗) (2.4)

for all x ∈ R. By commuting above relation with y, it follows

[x, y] = λ2[x, y] (2.5)

for all x, y ∈ R. Now commuting (2.2) with y, we obtain

[x∗, y] = λ[x, y] (2.6)

for all x, y ∈ R. Left multiplication of (2.6) with λ ∈ C and application of (2.5) yields

λ[x∗, y] = λ2[x, y] = [x, y] (2.7)

for all x, y ∈ R. Replace x by yx in (2.7), we obtain

λ[x∗, y]y∗ = y[x, y] (2.8)

for all x, y ∈ R. Right multiplication of (2.7) with y∗ yields

λ[x∗, y]y∗ = [x, y]y∗ (2.9)

for all x, y ∈ R. In view of (2.8) and (2.9), we have

[x, y]y∗ = y[x, y] (2.10)

for all x, y ∈ R. Again replacing x by y∗x in (2.7) and proceeding as above, we arrive at

[x, y]y = y∗[x, y] (2.11)

for all x, y ∈ R. Combination of (2.10) with (2.11) gives

[x, y](y∗ + y) = (y∗ + y)[x, y] (2.12)

Replacement of y by h + k, where h ∈ H(R) and k ∈ S(R), in above relation yields

[[x, h], h] + [[x, k], h]] = 0 (2.13)

for all x ∈ R, h ∈ H(R) and k ∈ S(R). Replacing h by −h in above expression and combining with
(2.13), we get

[[x, h], h]] = 0 (2.14)
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for all x ∈ R and h ∈ H(R). It can be easily seen that δx(h) = [x, h] is a derivation on R. If δx(h) is
nonzero, then it follows from [18, Theorem 2] that R satisfies s4, the standard polynomial identity in
four variables. On the other hand, if δx(h) = 0, then the involution is of the first kind. This completes
the proof.

A very immediate corollary of Proposition 2.4 is the following result.

Corollary 2.5 Let R be a s4- free prime ring with involution of characteristic different from two.
Then, any centralizing (resp. commuting) involution is of the first kind.

The following result is interesting in itself.

Proposition 2.6 Let R be a prime ring with involution of characteristic different from two. If x ◦ x∗ ∈
Z(R) for all x ∈ R, then the involution is of the first kind or R satisfies s4.
Proof. Direct linearization to the given hypotheses gives

x ◦ y∗ + y ◦ x∗ ∈ Z(R) (2.15)

for all x, y ∈ R. The last expression can be written as

[x ◦ y, r] + [y∗ ◦ x∗, r] = 0 (2.16)

for all x, y, r ∈ R. Substitution x = y in (2.16) and using the fact that char(R) , 2, we obtain

[x2, r] + [x∗2, r] = 0 (2.17)

for all x, r ∈ R. Replacing x by x2 and taking y ∈ Z(R) \ {0} in (2.16), we find

[x2, r]y + [x∗2, r]y∗ = 0 (2.18)

for all x, r ∈ R and y ∈ Z(R). Right multiplication by y∗ to (2.17)yields

[x2, r]y∗ + [x∗2, r]y∗ = 0 (2.19)

for all x, r ∈ R and y ∈ Z(R). Combining last two relations, we get

[x2, r]R(y − y∗) = 0 (2.20)

for all x, r ∈ R and y ∈ Z(R). Invoking the primeness of R, we find either [x2, r] = 0 or (y − y∗) = 0.
First we consider the case [x2, r] = 0 for all x, r ∈ R. Substituting x + z for x, where z ∈ Z(R) \ {0} in
the last relation and using the fact that char(R) , 2, we get [xz, r] = 0 for all x, r ∈ R. Since
z ∈ Z(R) \ {0}, we conclude that [x, r] = 0 for all x, r ∈ R. This implies that [x, x∗] = 0 for all x ∈ R.
Application of Proposition 2.4 yields the required result. On the other hand, if y − y∗ = 0 for
y ∈ Z(R) \ {0}. Then, in view of relation (2.15), we conclude that (x + x∗)y ∈ Z(R) for all x ∈ R. The
primeness of R gives (x + x∗) ∈ Z(R) for all x ∈ R. This further implies that [x, x∗] = 0 for all x ∈ R.
Hence, the involution is of the first kind or R satisfies s4 by Proposition 2.4. This proves the
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proposition.

Corollary 2.7 Let R be a s4- free prime ring with involution of characteristic different from two. If
x ◦ x∗ ∈ Z(R) for all x ∈ R, then the involution is of the first kind.

Now, we are ready to prove our main results:

Proof of Theorem 2.1. By the assumption, we have

[ψ(x), ψ(x∗)] − [x, x∗] ∈ Z(R) (2.21)

for all x ∈ R. In particular,

[ψ(x), ψ(x∗)] = [x, x∗] + γ (2.22)

for all x ∈ R and for some γ ∈ Z(R). Linearization of (2.21) gives

[ψ(x), ψ(y∗)] + [ψ(y), ψ(x∗)] − [x, y∗] − [y, x∗] ∈ Z(R) (2.23)

for all x, y ∈ R. Taking y as x∗x in above relation, we have

[ψ(x), ψ(x∗)]ψ(x) + ψ(x∗)[ψ(x), ψ(x∗)] − [x, x∗]x − x∗[x, x∗] ∈ Z(R) (2.24)

for all x ∈ R. Application of (2.22) yields

[x, x∗]ψ(x) + γψ(x) + ψ(x∗)[x, x∗] + γψ(x∗) − [x, x∗]x − x∗[x, x∗] ∈ Z(R)

for all x ∈ R. For x = h ∈ H(R), we get γψ(h) ∈ Z(R) for all h ∈ H(R). Since R is a prime ring,
so either γ = 0 or ψ(h) ∈ Z(R) for all h ∈ H(R). Since xx∗ and x∗x ∈ H(R), so one can observe
that [ψ(x), ψ(x∗)] ∈ Z(R). In view of (2.21), we have [x, x∗] ∈ Z(R). Thus the result follows form
Proposition 2.4. Now consider the situation when γ = 0 and assume the involution is of the second
kind. This reduces (2.22) into

[ψ(x), ψ(x∗)] − [x, x∗] = 0 (2.25)

for all x ∈ R. Reasoning as above, we get

[x, x∗]ψ(x) + ψ(x∗)[x, x∗] − [x, x∗]x − x∗[x, x∗] = 0 (2.26)

for all x ∈ R. That is

[x, x∗](ψ(x) − x) + (ψ(x∗) − x∗)[x, x∗] = 0 (2.27)

for all x ∈ R. Replacing x by h + k in (2.26), where h ∈ H(R) and k ∈ S(R), we have

[k, h](ψ(h) − h) + [k, h](ψ(k) − k) = (ψ(h) − h)[h, k] − (ψ(k) − k)[h, k] (2.28)
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for all h ∈ H(R) and k ∈ S(R). Taking k as −k in above expression and combine with (2.28), we obtain

[k, h](ψ(h) − h) = (ψ(h) − h)[h, k] (2.29)

for all h ∈ H(R) and k ∈ S(R). Now we want to show that ψ(x) − x ∈ Z(R) for all x ∈ R. We claim
that

[x, h](ψ(h) − h) = (ψ(h) − h)[h, x] (2.30)

for all x ∈ R and h ∈ H(R). Indeed, if x ∈ S(R), then the relation (2.30) is true for all x ∈ R. Now if
x ∈ H(R), then take xk1 instead of k in (2.29), where k1 ∈ S(R) ∩ Z(R) and using the fact that the
involution is of the second kind. But then, since every x ∈ R can be represented as 2x = h + k,
h ∈ H(R), k ∈ S(R), it follows that (2.30) holds for all x ∈ R. Next fix h. It is straightforward to show
that the map defined as x 7→ [x, h], is a derivation. In view of [15, Theorem 1], we observe that either
h ∈ Z(R) for all h ∈ H(R) or ψ(h) − h ∈ Z(R) for all h ∈ H(R). First case implies that the involution
is of the first kind, a contradiction. Therefore, we assume that ψ(h) − h ∈ Z(R) for all h ∈ H(R). One
can easily obtain from above that ψ(k) − k ∈ Z(R) for all k ∈ S(R). Reasoning as above, we get
ψ(x) − x ∈ Z(R) for all x ∈ R. Henceforward, we conclude that [ψ(x), x] = 0 for all x ∈ R. This
completes the proof of the theorem.

Proof of Theorem 2.2. We are given that ψ is a non-trivial endomorphism on R and satisfying the
relation

[ψ(x), ψ(x∗)] + x ◦ x∗ ∈ Z(R) (2.31)

for all x ∈ R. Substituting x∗ for x in (2.31) and using the facts that [x∗, x] = −[x, x∗] and x∗ ◦ x = x◦ x∗,
we acquire

−[ψ(x), ψ(x∗)] + x ◦ x∗ ∈ Z(R) (2.32)

for all x ∈ R. Combining the relations (2.31) and (2.32), we get x ◦ x∗ ∈ Z(R) for all x ∈ R.
Application of Proposition 2.6 yields the required result.

By symmetry, we also have the following results whose proofs parallels to that of Theorems 2.1
& 2.2.
Theorem 2.8 Let R be a prime ring with involution of characteristic different from two. If ψ is a
non-trivial endomorphism on R such that [ψ(x), ψ(x∗] + (x ◦ x∗) ∈ Z(R) for all x ∈ R, then the
involution is of the first kind or R satisfies s4.

Theorem 2.9 Let R be a prime ring with involution of characteristic different from two. If ψ is a
non-trivial endomorphism on R such that ψ(x) ◦ ψ(x∗) + [x, x∗] ∈ Z(R) for all x ∈ R, then the
involution is of the first kind or R satisfies s4.

Corollary 2.10 Let R be a prime ring with involution of characteristic different from two. If ψ is a
non-trivial endomorphism on R such that ψ(x)ψ(x∗) − xx∗ ∈ Z(R) for all x ∈ R, then the involution is
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of the first kind or R satisfies s4.

Proof. We assume that ψ(x)ψ(x∗) − xx∗ ∈ Z(R) for all x ∈ R. This can be rewritten as
ψ(x∗)ψ(x) − x∗x ∈ Z(R) for all x ∈ R. Combining the obtained expressions, we get
[ψ(x), ψ(x∗)] − (x ◦ x∗) ∈ Z(R) for all x ∈ R. In view of Theorem 2.2, we conclude the required result.

Corollary 2.11 Let R be a prime ring with involution of characteristic different from two. If ψ is a
non-trivial endomorphism on R such that ψ(x) ◦ ψ(x∗) − xx∗ ∈ Z(R) for all x ∈ R, then the involution
is of the first kind or R satisfies s4.

Corollary 2.12 Let R be a prime ring with involution of characteristic different from two. If ψ is a
non-trivial endomorphism on R such that [ψ(x), ψ(x∗)] − xx∗ ∈ Z(R) for all x ∈ R, then the involution
is of the first kind or R satisfies s4.

Corollary 2.13 Let R be a s4- free prime ring with involution of characteristic different from two. If ψ
is a non-trivial endomorphism on R such that [ψ(x), ψ(x∗)] − xx∗ ∈ Z(R) for all x ∈ R, then the
involution is of the first kind.

Corollary 2.14 Let R be a s4- free prime ring with involution of characteristic different from two. If ψ
is a non-trivial endomorphism on R such that [ψ(x), ψ(y)] − xy ∈ Z(R) for all x, y ∈ R, then the
involution is of the first kind.

In view of the above discussions, we conclude our paper with the following open problems.

Open Problem 2.15 Let R be a semiprime ring with involution and with suitable characteristic. Is any
centralizing involution on R of the first kind or R satisfies s4, the standard polynomial identity in four
variables ?

Open Problem 2.16 Let R be a semiprime ring with involution and with suitable characteristic. Next,
ψ be a non-trivial endomorphism on R such that [ψ(x), ψ(x∗)] − [x, x∗] ∈ Z(R) for all x ∈ R. Then
what we can say about the behaviour of involution or the structure of R ?

Open Problem 2.17 Let R be a semiprime ring with involution and with suitable characteristic. Next,
ψ be a non-trivial endomorphism on R such that [ψ(x), ψ(x∗)] − (x ◦ x∗) ∈ Z(R) for all x ∈ R. Then
what we can say about the behaviour of involution or the structure of R ?
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