Research article

Monotonicity and inequalities related to complete elliptic integrals of the second kind

  • Received: 28 December 2019 Accepted: 09 March 2020 Published: 17 March 2020
  • MSC : Primary 33E05; Secondary 26A48, 26D15, 33C75

  • In the paper, the authors present some monotonicity properties of certain functions defined in terms of the complete elliptic integrals of the second kind and some elementary functions and, consequently, improve several known inequalities for the complete elliptic integrals of the second kind.

    Citation: Fei Wang, Bai-Ni Guo, Feng Qi. Monotonicity and inequalities related to complete elliptic integrals of the second kind[J]. AIMS Mathematics, 2020, 5(3): 2732-2742. doi: 10.3934/math.2020176

    Related Papers:

  • In the paper, the authors present some monotonicity properties of certain functions defined in terms of the complete elliptic integrals of the second kind and some elementary functions and, consequently, improve several known inequalities for the complete elliptic integrals of the second kind.


    加载中


    [1] H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172 (2004), 289-312. doi: 10.1016/j.cam.2004.02.009
    [2] G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy, Elliptic integral inequalities, with applications, Constr. Approx., 14 (1998), 195-207. doi: 10.1007/s003659900070
    [3] G.-D. Anderson, S.-L. Qiu, M.-K. Vamanamurthy, et al. Generalized elliptic integrals and modular equations, Pacific J. Math., 192 (2000), 1-37. doi: 10.2140/pjm.2000.192.1
    [4] G.-D. Anderson, M.-K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1997.
    [5] S. András and Á. Baricz, Bounds for complete elliptic integrals of the first kind, Expo. Math., 28 (2010), 357-364. doi: 10.1016/j.exmath.2009.12.005
    [6] Á. Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z., 256 (2007), 895-911. doi: 10.1007/s00209-007-0111-x
    [7] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971.
    [8] C.-P. Chen and F. Qi, The best bounds in Wallis' inequality, Proc. Amer. Math. Soc., 133 (2005), 397-401. doi: 10.1090/S0002-9939-04-07499-4
    [9] Y.-M. Chu, M.-K. Wang, Y.-P. Jiang, et al. Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., 395 (2012), 637-642. doi: 10.1016/j.jmaa.2012.05.083
    [10] B.-N. Guo and F. Qi, On the Wallis formula, Int. J. Anal. Appl., 8 (2015), 30-38.
    [11] B.-N. Guo and F. Qi, Some bounds for the complete elliptic integrals of the first and second kinds, Math. Inequal. Appl., 14 (2011), 323-334.
    [12] Y. Hua and F. Qi, A double inequality for bounding Toader mean by the centroidal mean, Proc. Indian Acad. Sci. Math. Sci., 124 (2014), 527-531. doi: 10.1007/s12044-014-0183-6
    [13] Y. Hua and F. Qi, The best bounds for Toader mean in terms of the centroidal and arithmetic means, Filomat, 28 (2014), 775-780. doi: 10.2298/FIL1404775H
    [14] W.-D. Jiang and F. Qi, A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean, Publ. Inst. Math. (Beograd) (N.S.), 99 (2016), 237-242. doi: 10.2298/PIM141026009J
    [15] V. Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin's series, Cubo, 21 (2019), 51-64. doi: 10.4067/S0719-06462019000200051
    [16] X.-Y. Ma, Y.-M. Chu, F. Wang, Monotonicity and inequalities for the generalized distortion function, Acta Math. Sci., 33 (2013), 1759-1766. doi: 10.1016/S0252-9602(13)60121-6
    [17] F. Qi, Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities, Filomat, 27 (2013), 601-604. doi: 10.2298/FIL1304601Q
    [18] F. Qi and R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 2019 (2019), 1-42. doi: 10.1186/s13660-019-1955-4
    [19] F. Qi, L.-H. Cui, S.-L. Xu, Some inequalities constructed by Tchebysheff's integral inequality, Math. Inequal. Appl., 2 (1999), 517-528.
    [20] F. Qi and B.-N. Guo, Lévy-Khintchine representation of Toader-Qi mean, Math. Inequal. Appl., 21 (2018), 421-431.
    [21] F. Qi and Z. Huang, Inequalities for complete elliptic integrals, Tamkang J. Math., 29 (1998), 165-169.
    [22] F. Qi and A.-Q. Liu, Completely monotonic degrees for a difference between the logarithmic and psi functions, J. Comput. Appl. Math., 361 (2019), 366-371. doi: 10.1016/j.cam.2019.05.001
    [23] F. Qi, D.-W. Niu, B.-N. Guo, Refinements, generalizations, and applications of Jordan's inequality and related problems, J. Inequal. Appl., 2009 (2019), 271923.
    [24] F. Qi, X.-T. Shi, F.-F. Liu, et al. A double inequality for an integral mean in terms of the exponential and logarithmic means, Period. Math. Hungar., 75 (2017), 180-189. doi: 10.1007/s10998-016-0181-9
    [25] F. Qi and A. Sofo, An alternative and united proof of a double inequality for bounding the arithmetic-geometric mean, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 71 (2009), 69-76.
    [26] F. Qi, S.-W. Yao, B.-N. Guo, Arithmetic means for a class of functions and the modified Bessel functions of the first kind, Mathematics, 7 (2019), 60.
    [27] S.-L. Qiu, X.-Y. Ma, T. R. Huang, Some properties of the difference between the Ramanujan constant and beta function, J. Math. Anal. Appl., 446 (2017), 114-129. doi: 10.1016/j.jmaa.2016.08.043
    [28] S.-L. Qiu, M. K. Vamanamurthy, M. Vuorinen, Some inequalities for the Hersch-Pfluger distortion function, J. Inequal. Appl., 4 (1999), 115-139.
    [29] S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions with applications, Math. Comp., 74 (2004), 723-742. doi: 10.1090/S0025-5718-04-01675-8
    [30] S.-L. Qiu and M. Vuorinen, Special functions in geometric function theory, Handbook of Complex Analysis: Geometric Function Theory, 2 (2005), 621-659. doi: 10.1016/S1874-5709(05)80018-6
    [31] M. Vuorinen, Singular values, Ramanujan modular equations, and Landen transformations, Studia Math., 121 (1996), 221-230. doi: 10.4064/sm-121-3-221-230
    [32] F. Wang, J.-H. He, L. Yin, et al. Monotonicity properties and inequalities related to generalized Grötzsch ring functions, Open Math., 17 (2019), 802-812. doi: 10.1515/math-2019-0064
    [33] M.-K. Wang, Y.-M. Chu, Y.-F. Qiu, et al. An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24 (2011), 887-890. doi: 10.1016/j.aml.2010.12.044
    [34] M.-K. Wang, S.-L. Qiu, Y.-M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229. doi: 10.1016/j.jmaa.2011.06.039
    [35] G.-D. Wang, X.-H. Zhang, Y.-M. Chu, Inequalities for the generalized elliptic integrals and modular functions, J. Math. Anal. Appl., 331 (2007), 1275-1283. doi: 10.1016/j.jmaa.2006.09.070
    [36] L. Yin, X.-L. Lin, and F. Qi, Monotonicity, convexity, and inequalities related to complete (p, q, r)- elliptic integrals and generalized trigonometric functions, Publ. Math. Debrecen, 97 (2020), in press.
    [37] L. Yin and F. Qi, Some inequalities for complete elliptic integrals, Appl. Math. E-Notes, 14 (2014), 192-199.
    [38] X.-H. Zhang, G.-D. Wang, Y.-M. Chu, Remark on generalized elliptic integrals, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 417-426. doi: 10.1017/S0308210507000327
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4091) PDF downloads(314) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog