Research article Special Issues

Fractal approximation of chaos game representations using recurrent iterated function systems

  • Received: 01 October 2018 Accepted: 19 March 2019 Published: 20 January 2019
  • MSC : 37H99, 92D20

  • We demonstrate that chaos game representations of Cannabis sativa may be approximated by the chaos game approximation of a recurrent iterated function system attractor. Via numerical experiments, we then study the fractal scaling properties of both objects and apply a wavelet decomposition in order to investigate scale-invariant patterns. We show that the attractor of a recurrent iterated function system scales similarly to the chaos game representation and has a similar wavelet multiresolution analysis profile.

    Citation: Martin Do Pham. Fractal approximation of chaos game representations using recurrent iterated function systems[J]. AIMS Mathematics, 2019, 5(6): 1824-1840. doi: 10.3934/math.2019.6.1824

    Related Papers:

  • We demonstrate that chaos game representations of Cannabis sativa may be approximated by the chaos game approximation of a recurrent iterated function system attractor. Via numerical experiments, we then study the fractal scaling properties of both objects and apply a wavelet decomposition in order to investigate scale-invariant patterns. We show that the attractor of a recurrent iterated function system scales similarly to the chaos game representation and has a similar wavelet multiresolution analysis profile.


    加载中


    [1] J. S. Almeida, J. A. Carrico, A. Maretzek, et al. Analysis of genomic sequences by Chaos Game Representation, Bioinformatics, 17 (2001), 429-437. doi: 10.1093/bioinformatics/17.5.429
    [2] M. F. Barnsley, Superfractals, 1st edition, Cambridge University Press, Cambridge, 2006.
    [3] M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated function systems, Constr. Approx., 5 (1989), 3-31. doi: 10.1007/BF01889596
    [4] M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proceedings of the Royal Society of London A, 399 (1985), 243-275. doi: 10.1098/rspa.1985.0057
    [5] P. J. Deschavanne, A. Giron, J. Vilain, et al. Genomic signature: characterization and classification of species assessed by chaos game representation of sequences, Mol. Biol. Evol., 16 (1999), 1391-1399. doi: 10.1093/oxfordjournals.molbev.a026048
    [6] A. Fiser, G. E. Tusnady, I. Simon, Chaos game representation of protein structures, J. Mol. Graph. Model., 12 (1994), 302-304. doi: 10.1016/0263-7855(94)80109-6
    [7] J. M. Gutierrez, M. A. Rodriguez, G. Abramson, Multifractal analysis of DNA sequences using a novel chaos-game representation, Physica A: Statistical Mechanics and its Applications, 300 (2001), 271-284. doi: 10.1016/S0378-4371(01)00333-8
    [8] J. C. Hart, Fractal Image Compression and Recurrent Iterated Function Systems, IEEE Comput. Graph., 16 (1996), 25-33. doi: 10.1109/38.511849
    [9] H. J. Jeffrey, Chaos game representation of gene structure, Nucleic Acids Research, 18 (1990), 2163-2170. doi: 10.1093/nar/18.8.2163
    [10] H. Jia-Jing and F. Wei-Juan, Wavelet-based multifractal analysis of DNA sequences by using chaosgame representation, Chinese Phys. B, 19 (2010), 10205.
    [11] L. Kari, K. A. Hill, A. S. Sayem, et al. Mapping the space of genomic signatures, PLOS ONE, 10 (2015), 119815.
    [12] S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, 11 (1989), 674-693. doi: 10.1109/34.192463
    [13] P. Mayukha, B. Satish, K. Srinivas, et al. Multifractal detrended cross-correlation analysis of coding and non-coding DNA sequences through chaos-game representation, Physica A: Statistical Mechanics and its Applications, 436 (2015), 596-603. doi: 10.1016/j.physa.2015.05.018
    [14] H. Oh, B. Seo, S. Lee, et al. Two complete chloroplast genome sequences of Cannabis sativa varieties, Mitochondrial DNA Part A: DNA mapping, sequencing, and analysis, 27 (2016), 2835-2837.
    [15] D. Vergara, K. H. White, K. G. Keepers, et al. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus, Mitochondrial DNA Part A: DNA mapping, sequencing, and analysis, 27 (2016), 3793-3794.
    [16] Y. Wang, K. Hill, S. Singh, et al. The spectrum of genomic signatures: from dinucleotides to chaos game representation, Gene, 346 (2005), 173-185. doi: 10.1016/j.gene.2004.10.021
    [17] J-Y. Yang, Z-L. Peng, Y. Zu-Guo, et al. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation, J. Theor. Biol., 257 (2009), 618-626. doi: 10.1016/j.jtbi.2008.12.027
    [18] Y. Zu-Guo, V. Anh, K-S. Lau, Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses, J. Theor. Biol., 226 (2004), 341-348. doi: 10.1016/j.jtbi.2003.09.009
    [19] Y. Zu-Guo, X. Qian-Jun, S. Long, et al. Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures, Chinese Phys. B, 19 (2010), 68701.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4602) PDF downloads(331) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog