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Abstract: We demonstrate that chaos game representations of Cannabis sativa may be approximated
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1. Introduction

Fractal-based analysis provides a framework to investigate self-similar and scale-invariant patterns.
Fractal-generating systems can model complex objects using simple self-referential rules with few
parameters [2]. A simple method for generating fractals called the chaos game was introduced in [4]
which involved repeatedly iterating a set of contractive mappings in order to compute the
approximation of a fixed point. A more generalized framework was introduced in [3] that could
produce more complex patterns. Chaos game representation is a method to visualize one-dimensional
sequences first introduced to investigate multi-scale structures in DNA [9]. The chaos game
representations of many different DNA samples were shown to be self-similar and
scale-invariant [11]. This motivates the study of fractal properties in chaos game representations more
rigorously.

Chaos game representation has been used for the characterization and classification of species [5],
protein structure prediction methods [6, 17], and the analysis of whole genomes [1, 16]. Multifractal
analyses of chaos game representation have also been investigated [7, 13, 18, 19] with some wavelet
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analysis [10]. However, there does not seem to be much work done on drawing a comparison between
recurrent iterated function systems and chaos game representation. Such work may contribute to the
theoretical basis for fractal-based methods of analysis and modelling of DNA.

The paper is organized as follows. Section 2 recalls the definition of chaos game representation,
describes a method for generating fractal objects, and introduces the method for approximating chaos
game representations. Section 3 discusses numerical experiments investigating fractal scaling
properties and approximation errors. Section 4 concludes with a discussion of possible applications
and further directions.

2. Method

In this section, we describe both chaos game representation and recurrent iterated function systems.
We then introduce the method for approximating the former with the latter.

2.1. Chaos game representation

Chaos game representation (CGR) [9] is a method of visualizing one-dimensional sequences used
to investigate local and global structures in DNA. Consider the sequence {s;}’, where the element s
may be one of N possible symbols. The method is as follows:

1. Consider a regular N-gon and associate each vertex with a unique symbol
2. Initialize aset S = 0

3. Read off the sequence. For each element in the sequence, add to the set S the midpoint between
the previous point and the vertex associated with the current element. Use the center of the
polygon as an initial seed to compute the points in S.

4. Plot S

In the case of DNA, the sequence is a finite list of nucleotides {A, G, T, C} which are chosen to be
associated with the points {(0,0), (1,0), (1, 1), (0, 1)}, respectively. CGR is thus supported on a unit
square and each nucleotide is represented by a corner. Note that for any subquadrant (or cell) at a
fixed resolution, i.e. when the unit square is divided into a non-overlapping grid of size 1/i X 1/i for
resolution level i € Z*, there is a subsequence of length i associated with that grid cell. See Figure 1
for subquadrants of resolution i = 1,2 and their associated subsequence codes.

Thus, a point in (0, 0.25) x (0, 0.25) is an element in the sequence with symbol ‘A’ that is preceded
by another ‘A’ nucleotide and the subquadrant can be coded with the sequence ‘AA’. Similarly, a point
in the subquadrant (1/2,5/8) x (1/2,5/8) is generated by a symbol ‘T’ preceded by the
subsequence/code ‘AA’. So, for example, the points generated by the last element of the two
sequences ‘AAGAATC’ and "CAATC’, i.e. the symbol ‘C’, will both have previous points from the
subquadrant (1/2,5/8) x (1/2,5/8) (since they are both at least preceded by ‘AAT’) even though they
may be reads from different regions of the DNA sequence. Specifically, the points will be in the
subquadrants (of different resolution) addressed by the codes ‘AAGAATC’ and ‘CAATC’ contained
in the quadrant (0, 1/2) x (1/2, 1), respectively. Every point in the set generated by the CGR method
may be viewed as a member of some subquadrant at resolution i and from this subquadrant’s unique
code the subsequence preceding the element associated with the point may be recovered (Figure 2).
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Figure 1. Subquadrants at a fixed resolution i have a unique code of length i to address the
set of points inside.
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Figure 2. CGR of the sequence ‘AGTCGC’. Note that for each symbol, the point generated
by that symbol lands in the corresponding quadrant.

Figure 3 shows the CGRs of Cannabis sativa chloroplast genomes taken from four different
regions around the world: Dagestani, Russia [15]; Cargmagnola, Italy [15]; Yoruba, Nigeria [14];
Cheungsam, Korea [14]. There is a diagonal-dominant pattern that is self-similar in different

quadrants and subquadrants. The self-similarity across scales motivates the use of fractals to
approximate CGR.
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Dagestani, Russia. 153871 base pairs. Carmagnola, Italy. 153871 base pairs.

e

Yoruba, Nigeria. 153854 base pairs. Cheungsam, Korea. 153848 base pairs.

Figure 3. CGRs of four different Cannabis sativa DNA sequences.

2.2. Recurrent iterated function systems

Recurrent iterated function systems (RIFS) [3] are a natural generalization of iterated function
systems [4]. Iterated function systems provide a method for constructing fractals as the attractive
fixed-point of a contractive operator defined on a complete metric space. We recall the definition of a
RIFS in generality from [8].

Definition 2.1. An N-map RIFS is defined as (G,{f; : X — X}f; ) where G = (V, E) is a directed
N-vertex graph with vertices V and edges E, and {f;}Y | is a set of contractive transformations defined
on X the set of all non-empty compact subsets of a complete metric space X. Note that the convention

of expressing x € X as a union of N separate sets | J¥, x;, = x € X is adopted. This decomposition
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is done in order to “combine” the parallel action of the N contractive transformations. Each vertex
v; € V is associated with a transformation f;. Each edge e;; € E represents the connection from v; to v;
associated with the transformations f; and f;. We represent the graph G using its adjacency matrix M
where M;; is the edge e;;.

We first introduce deterministic fractals generated by a RIFS and then consider so-called random
fractals generated by a RIFS with probabilities.

Definition 2.2. Given a RIFS (G, { fi}ﬁ\; |)» the Hutchinson operator 7' : X — X is the collective action
of the transformations on x given by

N
T(0 := | Ti(x)
i=1

where

Tix) = ) i),

e,-]-EE

o .

Figure 4. Let the indices i = 1...4 correspond to the vertices {A,G, T, C}.

Example Consider the 4-map RIFS (G, { ﬁ}?zl) where G i1s the graph as in Figure 4 and {f;} is a set of
contractive transformations. The Hutchinson operator defined by such a RIFS is given by

T(x) := (fa(x1) U (fi(x2) U f3(x2)) U (f2(x3) U f3(x3)) U (fo(x4) U f3(xa))-

The action of the Hutchinson operator is thus the union of transformations given the connectivity of
the vertices on the graph G. By [3], T is contractive and thus there exists a unique attractive fixed point
X that satisfies the self-referential equation

x=T(X)

whose self-similarity motivates the description of the attractor X as a fractal. The set X is invariant
under 7'. Such attractors are called deterministic fractals. Denote the nth composition of the operator
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TasT" eg. (ToT)x)=T*x),(ToToT)(x) =T (x), etc. The dynamic of a RIFS and the iteration
of its Hutchinson operator on any initial set x may thus be written as the limit of compositions

Iim T°"(x) = x = T(X) Vx cX.

The attractor X of a RIFS may be approximated by the chaos game method [8] which generates N
sequences of points for an initial X’ € X using the recurrence relation

x(t+l) — T(x(t)) — TOHI(X(O)).
Thus % ~ U!_,x for some stopping iteration z.

Definition 2.3. A RIFS (G, {f;}Y,) may also be probabilistic, generating attractor sets that are called
random fractals. Let G be a weighted directed graph where p;; denotes the weight of the edge e;; and
Z’}'zl pij = 1 ¥i = 1...N. The adjacency matrix M of the graph G thus contains the elements M;; = p;;.

Definition 2.4. The probabilistic Hutchinson operator can thus be expressed as

N
T(0 := | Ti(x)
i=1

where

Ti(x) := U Lip<p fi(xi)

e,'jEE

and P ~ U[0, 1] is a uniform random variable with 1p<, , an indicator variable.

Example We revisit the previous example. Consider the 4-map RIFS (G, {f;}?_,) where G is the graph
P33
S |&
o X

()

Figure 5. Let the indices i = 1...4 correspond to the vertices {A, G, T, C}.

as in Figure 5 and {f;} is a set of contractive transformations. Depending on the observed values of the
random variable P, one possible set of the first three iterations of the chaos game may have the forms:

T°'(x) := (fa(x)) U (fi(x2) U f5(x2)) U (f5(x3)) U (fo(xa))
T(x) := (fi(x2) U f5(x2)) U (fa(x3) U £3(x3)) U (fo(xa) U f3(x4))
T (x) := (fa(x1)) U (5(x2)) U (5(x3)) U (H(xa) U fs(x2)).
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The iteration of a Hutchinson operator defined by a RIFS with probabilities is related to a Markov
process. For an initial state x@ = [JY, x'”’, the next set of values x**" is obtained by randomly
selecting the actions from a set of transformations f; with probability p;; given the previous
transformation f; for each of the x;. The initial transformation for each set x; is its index i, i.e. xgl) 18
obtained by randomly applying a transformation f; with probability p;; onto the set xEO) and the f;
becomes the most recent transformation applied to that ith set. From this point forward we consider

RIFS with probabilities.

Example Consider the 3-map RIFS (G, {f;})_,) on the unit square X = [0, 1] x [0, 1] where {f;}?_, is
a set of affine transformations

05 0
fl(x) - i 0 0.5:|x

05 0] [05
PO =102 o5|** %g]

_fos o 3
L N L R

and the 3-vertex graph G is described by the right stochastic adjacency matrix

03 05 0.2
M=102 05 03].

04 02 04

0 5] and ¢ = 10° is shown in Figure 6.

The chaos game for x© = [

Example Consider the 5S-map RIFS (G, { f,-}f: ,) on the unit square X = [0, 1] x [0, 1] where { f,-}f:1 is
a set of affine transformations

117
) =11 1|x
2 3]
T o
f(x) = (3) 1[X*]2
V3] 3]
TP 27
fx) = (3) | x+]3
Y 3] [ 3]
T %
-3
Ja(x) 0 % X+ 0]
0.5 0 1
f5(x) = X+ |7
|0 05 :
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and the 5-vertex graph G is described by the right stochastic adjacency matrix

04 0.1 0.1 0.1 03
02 01 03 02 02
M=(02 02 03 01 0.2].
0 01 04 0.1 04
0.1 0.1 02 02 04

0) —
The chaos game for x [ 0.5

] and ¢ = 10% is shown in Figure 6.

3-map RIFS 5-map RIFS

Figure 6. Approximations of RIFS attractors using chaos game.

2.3. CGR approximation

We define the CGR approximating models in both deterministic and random settings by constraining
the general RIFS model above.

Let X be the set of non-empty compact subsets of the unit square X = [0,1] x [0,1]. Let the
nucleotide symbols {A, G, T, C} be denoted by the indices i € {1, 2, 3,4} corresponding to the graph
vertices (i.e. the corners given by the unit square {(0, 0), (1,0), (1, 1), (0, 1)}, respectively). Define the
four non-overlapping contractive transformations {f; : X — XJ! |
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fix) = :0(')5 0(_)ij

fx) = :0(')5 0(.)5:“ :065:
Fo=| G 5]+ o3
Jolx) = :065 0(.)5:’“r io(.)5:'

That is, fi, fa, f3, fa correspond to taking the midpoint of each point in a set with the corners
(0,0),(1,0),(1,1),(0,1) when a nucleotide A,G, T, C is read, respectively. Note that this is a fairly
strong constraint on the general RIFS framework as the transformations need not share a domain but
is the natural analogue to CGR.

We first define the approximating model in the deterministic setting.

Definition 2.5. Let G be a complete 4-vertex directed graph with a loop on every vertex. The
deterministic approximating model is thus the RIFS given by (G, {fi}+,). The CGR of a sequence is
thus approximated by generating a chaos game approximation of the RIFS attractor such that the total
number of points is equivalent to the length of the sequence.

We define the approximating model in the random setting by using the sequence to compute the
edge weights of the graph.

Definition 2.6. Let G be a weighted complete 4-vertex directed graph with a loop on every vertex,
represented by a right stochastic adjacency matrix M € R**. The matrix entries M;; representing
edge weights are computed as the probability of a nucleotide i being followed by a nucleotide i’ in
the DNA sequence. These probabilities are obtained by computing the proportion of adjacent pairs ii’
that appear in the sequence. Thus the entry M, represents the likelihood of the nucleotide i’ following
the nucleotide i in the DNA sequence. The random approximating model is thus the RIFS given by
(G, {f:}\_,). Again, the CGR of a sequence is approximated by generating a chaos game approximation
of the RIFS attractor. The use of probabilities allows for local variation that better approximates CGR
by using known information.

3. Numerical results

In this section, we discuss numerical experiments investigating the fractal properties of CGR and
RIFS attractor approximations.

3.1. Approximating Cannabis sativa CGR

The RIFS attractor approximations of the Cannabis sativa CGRs are shown in Figure 7. There is a
self-similar diagonal-dominant pattern as in Figure 3, however the distribution of this pattern is more
uniform.  This implies that there are smaller-scale visual structures (corresponding to longer
subsequence patterns) that are not captured by the RIFS approximation. This information may be

AIMS Mathematics Volume 5, Issue 6, 1824—1840.



1833

encoded by extending the RIFS as a higher-order Markov chain keeping track of the sequence of
previous transformations applied to each set and computing the proportion of longer nucleotide
subsequences in the DNA (e.g. ii’i” where i,i’,i’”” are nucleotides). The error images are shown in
Figure 8. The diagonal-dominant error pattern may be a result of the RIFS attractor not encoding the

smaller scale features but still capturing the larger scale diagonal patterns.

The Dagestani and Carmagnola sequences differ by only 16 single nucleotide polymorphisms [15]
and the Yoruba and Cheungsam sequences are also nearly identical [14]. Thus the adjacency matrices
computed for the four different DNA sequences are equal (up to four significant digits) and given by

0.3615 0.1723 0.3250 0.1412
M = 0.3576  0.2327 0.2495 0.1602
~10.2547 0.1680 0.3637 0.2136]

0.2865 0.1630 0.3086 0.2419

The RIFS approximations between different DNA samples of Cannabis sativa are thus nearly identical
with any difference being a result of the stochasticity of the chaos game. For this reason we only
consider the results of the DNA sample from Dagestani as the other sequences produce similar results.

3.2. Image approximation errors

We consider the image approximation errors of the RIFS attractor to the CGR as seen in Figure 8.
Table 1 compares the average I' and /> distances as well as the structural similarity index (SSIM) and
peak signal-to-noise ratio (PSNR) between 1000 fractal approximations computed by chaos game and
the chaos game representation for an image of size 1024 x 1024. The poor approximation errors are
a result of errors at the local level. That is, since only the subsequences of length 2 were used to
encode the fractal generating system, global structures were captured with more accuracy than local
structures. To capture these local structures, a system would need to incorporate the statistics for the
frequency of longer subsequences. This may be a weakness of using image based methods to compare
the approximations as encoding smaller scale local structures would require comparing larger images.
In particular, images may suffer from aliasing as the pixel size determines the scale of resolution for
the smallest subquadrant, and that subquadrant may indeed contain several points from the generated
set. It is for this reason that measures on sets may be preferable, and would extend naturally into the
iterated function system framework.

Table 1. Images may suffer from aliasing since a sufficiently large image is needed to contain
all the sequence information.

Measure Distance
/! 197702.0014
P 444.6369
SSIM 0.0548
PSNR 7.2147
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Dagestani

Carmagnola

s i

Yoruba Cheungsam

Figure 7. RIFS attractor approximations of Cannabis sativa CGRs.

Dagestani Carmagnola Yoruba Cheungsam

Figure 8. Error images between CGR and RIFS approximation.
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3.3. Box counting

The box counting method [2] is applied to the Dagestani Cannabis sativa in order to investigate
how similar both CGR and RIFS approximations are to each other in terms of fractal scaling. Boxes
sized in powers of 2 are used in a fixed grid scan for 4096 x 4096 sized images. The number of boxes
which contain a non-empty subset of the sets of points are counted. The log-log relationship between
the box size and number of boxes covering the set are plotted in Figure 9 and suggests that both images
have similar fractal scaling. The curve for the RIFS is given by the average of 1000 chaos games run
for 150000 iterations each. The slightly higher number of covering boxes for the RIFS attractor at
smaller box sizes is a result of the more uniformly distributed diagonal-dominant pattern across scales.
The global patterns of the attractor are more present at the smaller scales than is the case with CGR.
Conversely, the slightly lower number of covering boxes for the CGR implies that there is more local
variation than in the RIFS attractor. The similarity in the box-counting dimension implies that there
is a similar amount of overlap in the plots of the points. Since each box size can be associated with a
subquadrant, this implies that at each resolution corresponding to a box size there has been an accurate
amount of information approximated by the RIFS attractor. For instance, a box of size 8 pixels implies
that the subquadrant resolution is i = 4096/8 = 512 and thus the common degree of overlap between
the two images at this resolution suggests that the RIFS has partially encoded for elements in the
sequence preceded by subsequences of length 512 despite issues with flexibility in local variation.

[—@- cGr
@~ RIFS

= = =
5 =} =}
I e n

log{number of covering boxes)

H
5
)

L L i i L D‘
10 15 20 25 30 35
log(box size)

Figure 9. Similar log-log relationships indicate that both the CGR and RIFS approximation
have similar fractal scaling.

3.4. Wavelet multiresolution analysis

In order to compare the self-similarities at different scales, a wavelet multiresolution analysis
(MRA) [12] is used to decompose the CGR and RIFS approximation into a multiscale representation
using the Haar wavelet basis. The Haar wavelet basis is chosen since the support of the basis functions
are analogous to the unique subsequence corresponding to a subquadrant on the unit square in the
CGR. That is, the Haar wavelet basis is chosen because it has support on contracted and translated
versions of the unit square which corresponds to subquadrants of different resolutions. The MRA of
the approximation error is shown in Figure 10. The MRA of the CGR and RIFS approximation for the
Dagestani Cannabis sativa are shown in Figures 11 and 12. The MRA of the RIFS approximation is
more uniformly distributed with the diagonal-dominant pattern more prominent across all scales.
Both have similar Haar wavelet decompositions demonstrating that the RIFS approximation has
captured the multi-scale structure of the sequence. The diagonal-dominant structure visible at all four
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resolutions indicates that it is a pattern exhibited in subsequences of the DNA up to length four.

Figure 10. 4-level Haar wavelet MRA of the approximation error.

e

Level 2 decomposition

Level 3 decomposition Level 4 decomposition

Figure 11. CGR Haar wavelet MRA for images of size 1024 x 1024.
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Level 1 decomposition Level 2 decomposition

Level 3 decomposition Level 4 decomposition

Figure 12. RIFS attractor Haar wavelet MRA for images of size 1024 x 1024.

The similarity in wavelet MRA profile implies that the RIFS attractor and CGR have similar
scale-space representations. That is, both sets of points have the same self-similar structure at
different scales. This is supported by the measurements of the box-counting dimension. Due to the
uniqueness of subquadrants at a fixed resolution being associated with a subsequence, small-scale
self-similar structures in the MRA imply patterns in the frequency of different nucleotides following
large subsequences. It is for this reason that the Haar basis is chosen. In particular, the address of a
wavelet coeflicient in the MRA is associated to a particular subquadrant and so can be coded by the
corresponding subsequence. For example, a wavelet coeflicient at the fourth decomposition level can
be uniquely associated to a subquadrant of resolution i = 4 and a subsequence of length 4. Thus the
interpretation of the similarity in MRA profiles should be that the introduced method incorporates
information at a resolution of i = 2 but the generated fractal contains accurate information and
patterns at greater levels of resolution. Note that these small-scale wavelet patterns (of level 4) and
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their associated patterns in large subsequences (of length 4) were captured by the statistics of small
subsequences (of length 2). This is demonstrative of the robustness of fractal-based methods for
investigating scale-invariant structures.

Lastly, the wavelet MRA of the error suggests that there is information at higher resolutions not
being encoded. This may be improved by extending the RIFS to encode the probabilities of longer
subsequences, i.e. using a higher order Markov chain process to model the fractal attractor.

4. Conclusion

The chaos game approximation of a recurrent iterated function system attractor can well
approximate the global structures produced by the chaos game representation of DNA sequences,
although the lack of encoding for larger subsequence statistics in the fractal generation results in poor
local approximations. The attractor and chaos game representation have similar fractal scaling and
wavelet multiresolution analysis profile. This method of approximating DNA sequence
representations may offer a way to investigate mutations and genetic variation. The CGR of a mutated
DNA sequence can be approximated and the fractal-generating system providing a latent space of
parameters in which to compare with a referent sequence. This system may be extended to include
information at smaller visual scales and thus encode information relating to larger sequence scales.

Genomic applications for the proposed framework include imputation of unknown sequence reads
and the construction of a phylogeny of Cannabis. Imputation may be done by encoding the statistics
of the known reads and generating the unknown nucleotides by playing the chaos game given the
preceding known subsequence. For instance, a single nucleotide polymorphism (SNP) may be imputed
by considering the preceding subsequence at the unknown location and using the center point of the
corresponding subquadrant as a ‘seed’ to bias the generation of the next element in the sequence. Such
a method may also be useful when codon information relating to protein production is available, using
the codon subsequence to extend the seed to higher resolution subquadrants. Additionally, statistics
from both the positive and negative strands may be incorporated to make use of all known data. The
construction of a phylogeny as in [11] would offer a latent space representation to compare different
strands of Cannabis. These representations may then be correlated with phenotypic expressions (such
as seeds, flower size, crystalline cannabinoids, etc.). Such analysis may help to inform agricultural
practices, e.g. helping to select which plants to breed together if a certain phenotype is desired. Of
particular interest is the correlation of the psychoactive substances in Cannabis with the parameters
encoded by the fractal generating system. Indeed, such an application of fractal-based analysis would
be in line with the original motivations for the construction of fractal generating systems where the
parameters are suggested to encode for biological mechanisms [2].

The proposed iterated function system framework has several weaknesses that may be addressed
by further research. Firstly, the generation of these sets of points does not necessarily induce a
corresponding sequence since there are in fact N subsets being generated in parallel. Secondly, the
error in approximation is subject to the stochasticity of the RIFS and thus is in turn subject to the
quality and availability of known sequence information. Lastly, there lacks the flexibility to control
the local structure of the generated sets which would be important for capturing genetic variation and
mutations. These drawbacks may be addressed by the use of V-variable fractals [2], a further
generalization of iterated function systems. V-variable fractals make accessible the generation of
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families of fractals from a code space in which genomic analysis may be done. The integer parameter
V prescribes the number of distinct patterns that may be present at any level of resolution. Thus in the
case of V DNA samples, a V-variable fractal generating system may be constructed that allows for the
selection of which of the V sets of statistics (from the DNA sequences) will be used to generate the
next point in the chaos game. Given V sequences, all the statistics may be incorporated into a single
family of fractals by constructing a V-variable fractal generating system where the permissible
patterns at different resolutions are given by the V sequences; the selection of which set of statistics to
use at the resolution may then be informed by biologically plausible hypotheses. For example, in the
case of phasing genomes, a V = 2 V-variable fractal generating system may be constructed where the
two distinct patterns (and sets of statistics) are given by the paternal and maternal sequences.
Similarly, when dealing with positive and negative DNA strands, a V = 2 V-variable fractal
generating system may be constructed where the two patterns are given by the positive and negative
strands. Alternatively, a reference sequence and a mutated sequence may be used to constructa V = 2
V-variable fractal generating system where the presence of patterns is distributed across scales to
capture local variation informed by the mutated sequence with the global structure of the fractal
mostly informed by the reference sequence. Thus, V-variable fractals would offer a robust
generalization of the proposed framework that offers flexibility in local variation as well as a code
space addressing the generated fractals to use as a latent space representation of sequences.
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