Citation: Igor B. Krasnyuk, Roman M. Taranets, Marina Chugunova. Dynamic boundary conditions in the interface modeling of binary alloys[J]. AIMS Mathematics, 2018, 3(3): 409-425. doi: 10.3934/Math.2018.3.409
[1] | R. Beikler, E. Taglauer, Surface segregation at the binary alloy Cu Au (100) studied by low-energy ion scattering, Surface Science, 643 (2016), 138-141. |
[2] | K. Binder, S. Puri and H. L. Frisch, Surface-directed spinodal decomposition versus wetting phenomena: Computer simulations, Faraday Discuss, 112 (1999), 103-117. |
[3] | A. Brandenburg, P. J. Käpylä and A. Mohammed, Non-Fickian diffusion and tau approximation for numerical turbulence, Phys. Fluids, 16 (2004), 1020-1028. |
[4] | H. H. Brongersma, M. Draxler, M. de Ridder, et al. Surface composition analysis by low-energy ion scattering, Surface Science Reports, 62 (2007), 63-109. |
[5] | T. M. Buck, G. H. Wheatley, L. Marchut, Order-disorder and segregation behavior at the Cu3Au(001) surface, Phys. Rev. Lett., 51 (1983), 43-46. |
[6] | G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. An., 92 (1986), 205-245. |
[7] | C. Charach, P. C. Fife, On thermodynamically consistent schemes for phase field equations, Open Syst. Inf. Dyn., 5 (1998), 99-123. |
[8] | C. Ern, W. Donner, A. Rühm, et al. Surface density oscillations in disordered binary alloys: X-ray reflectivity study of Cu3Au(001), Appl. Phys. A, 64 (1997), 383-390. |
[9] | J. Gao, V. Bojarevics, K. A. Pericleous, et al. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts, Journal Crystall Growth, 471 (2017), 66-72. |
[10] | M. J. Harrison, D. P. Woodruff, J. Robinson, Surface alloys, surface rumpling and surface stress, Surface Science, 572 (2004), 309-317. |
[11] | I. B. Krasnyuk, Spatial-temporal oscillations of order parameter in confined diblock copolymer mixtures, International Journal of Computational Materials, Science and Engineering, 2 (2013), 1350006. |
[12] | I. B. Krasnyuk, R. M. Taranets, M. Chugunova, Long-time oscillating properties of confined disordered binary alloys, Journal of Advanced Research in Applied Mathematics, 7 (2015), 1-16. |
[13] | I. B. Krasnyuk, Surface-directed multi-dimensional wave structures in confined binary mixture, International Journal of Computational Materials Science and Engineering, 4 (2015), 1550023. |
[14] | I. B. Krasnyuk, Impulse Spatial-Temporal Domains in Semiconductor Laser with Feedback, Journal of Applied Mathematics and Physics, 4 (2016), 1714-1730. |
[15] | I. B. Krasnyuk, R. M. Taranets, M. Chugunova, Stationary Solutions for the Cahn-Hilliard equation coupled with Neumann boundary conditiona, Bulletin of the South Ural State University. Ser., Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 9 (2016), 60-74. |
[16] | N. Lecoq, H. Zapolsky and P. Galenko, Evolution of the Structure Factor in a Hyperbolic Model of Spinodal Decomposition, European Physical Journal Special Topics, 179 (2009), 165-175. |
[17] | T. Y. Li, J. A. Yorke, Period Three Implies Chaos, The American Mathematical Monthly, 82 (1975), 985-992. |
[18] | Y. L. Maistrenko, E. Y. Romanenko, About qualitative behaviour of solutions of quasi-linear differential-difference equations, The research of differential-difference equations, Kiev, Institute Mathematics, 1980. |
[19] | J. C. Maxwell, On the dynamical theory of gases, Philos. T. R. Soc. A, 157 (1867), 49-88. |
[20] | H. Niehus, W. Heiland, E. Taglauer, Low-energy ion scattering at surfaces, Surface Science Reports, 17 (1993), 213-303. |
[21] | H. O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals, New Frontiers of Science, Springer-Verlag, New York, 2004. |
[22] | O. Penrose, P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. |
[23] | J. du Plessis, Surface Segregation, Series Solid State Phenomena, volume 11, Sci.-Tech. Pub., Vaduz, 1990. |
[24] | M. Polak, R. Rabinovich, The interplay of surface segregation and atomic order in alloys, Surface Science Reports, 38 (2000), 127-194. |
[25] | S. Puri, K. Binder, Surface effects on spinodal decomposition in binary mixtures and the interplay with wetting phenomena, Phys. Rev. E, 49 (1994), 5359-5377. |
[26] | E. Y. Romanenko, A. N. Sharkovsky, Ideal turbulence: attractors of deterministic systems may lie in the space of random fields, Int. J. Bifurcat. Chaos, 2 (1992), 31-36. |
[27] | E. Y. Romanenko, A. N. Sharkovsky, From one-dimensional to infinite-dimensional dynamical systems: Ideal turbulence, Ukrainian Math. J., 48 (1996), 1817-1842. |
[28] | E. Yu. Romanenko, A. N. Sharkovsky, M. B. Vereikina, Self-stochasticity in deterministic boundary value problems, Nonlinear Boundary Value Problems, Institute of Applied Mathematiccs and Mechanics of the NAS of Ukraine, 9 (1999), 174-184. |
[29] | A. N. Sharkovsky, Yu. L. Maistrenko, E. Yu. Romanenko, Difference equations and their applications, Ser. Mathematics and Its Applications, 250, Klüwer Academic, Dordrecht, The Netherlands, 1993. |
[30] | A. Sharkovsky, A. Sivak, Universal Phenomena in Solution Bifurcations of Some Boundary Value Problems, J. Nonlinear Math. Phy., 1 (1994), 147-157. |
[31] | E. Taglauer, Low-energy ion scattering and Rutherford backscattering, Surface Analysis - The Principal Techniques, 2nd ed., eds. by J.C. Vickerman and I.S. Gilmore, JohnWiley & Sons, Ltd., 269-331, 2009. |
[32] | J. Tersoff, Oscillatory segregation at a metal alloy surface: Relation to ordered bulk phases, Phys. Rev. B, 42 (1990), 10965-10968. |