Research article

Lp-analysis of one-dimensional repulsive Hamiltonian with a class of perturbations

  • Received: 01 March 2017 Accepted: 22 December 2017 Published: 05 January 2018
  • MSC : 47E05, 47A10

  • The spectrum of one-dimensional repulsive Hamiltonian with a class of perturbations $H_p = -\frac{d^2}{dx^2}-x^2+V(x)$ in $L^p(\mathbb{R})$ ($1 < p < \infty$) is explicitly given. It is also proved that the domain of $H_p$ is embedded into weighted $L^q$-spaces for some $q>p$. Additionally, non-existence of related Schrödinger ($C_0$-)semigroup in $L^p(\mathbb{R})$ is shown when $V(x)\equiv 0$.

    Citation: Motohiro Sobajima, Kentarou Yoshii. Lp-analysis of one-dimensional repulsive Hamiltonian with a class of perturbations[J]. AIMS Mathematics, 2018, 3(1): 21-34. doi: 10.3934/Math.2018.1.21

    Related Papers:

  • The spectrum of one-dimensional repulsive Hamiltonian with a class of perturbations $H_p = -\frac{d^2}{dx^2}-x^2+V(x)$ in $L^p(\mathbb{R})$ ($1 < p < \infty$) is explicitly given. It is also proved that the domain of $H_p$ is embedded into weighted $L^q$-spaces for some $q>p$. Additionally, non-existence of related Schrödinger ($C_0$-)semigroup in $L^p(\mathbb{R})$ is shown when $V(x)\equiv 0$.


    加载中
    [1] R. Beals, R. Wong, Special functions, Cambridge Studies in Advanced Mathematics, 126, Cambridge University Press, Cambridge, 2010.
    [2] J.-F. Bony, R. Carles, D. Hafner, et al. Scattering theory for the Schrödinger equation with repulsive potential, J. Math. Pures Appl., 84 (2005), 509-579.
    [3] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, Amer. Mathematical Society, 2003.
    [4] J. D. Dollard, C. N. Friedman, Asymptotic behavior of solutions of linear ordinary differential equations, J. Math. Anal. Appl., 66 (1978), 394-398.
    [5] K. -J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., 194, Springer-Verlag, 2000.
    [6] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, Oxford Univ. Press, New York, 1985.
    [7] T. Ikebe, T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Ration. Mech. An., 9 (1962), 77-92.
    [8] A. Ishida, On inverse scattering problem for the Schrödinger equation with repulsive potentials, J. Math. Phys., 55 (2014), 082101.
    [9] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-New York, 1966.
    [10] F. Nicoleau, Inverse scattering for a Schrodinger operator with a repulsive potential, Acta Math. Sin., 22 (2006), 1485-1492.
    [11] G. Metafune, M. Sobajima, An elementary proof of asymptotic behavior of solutions of u'' = Vu, preprint (arXiv: 1405. 5659). Available from: http://arxiv.org/abs/1405.5659.
    [12] N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Jpn, 34 (1982), 677-701.
    [13] F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York-London, 1974.
    [14] H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Pure and Applied Mathematics, 204, Marcel Dekker, New York, 1997.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3914) PDF downloads(822) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog