Research article

A note on the inclusion sets for singular values

  • Received: 01 February 2017 Accepted: 15 May 2017 Published: 23 May 2017
  • In this paper, for a given matrix $A=(a_{ij}) \in \mathbb{C}.{n\times n}$, in terms of $r_i$ and $c_i$, where $ r_i = \sum\limits_{j = 1, j \ne i}.n {\left| {a_{ij} } \right|}, \ \ c_i = \sum\limits_{j = 1, j \ne i}.n {\left| {a_{ji} } \right|} $, some new inclusion sets for singular values of a matrix are established. It is proved that the new inclusion sets are tighter than the Geršgorin-type sets [1] and the Brauer-type sets [2]. A numerical experiment show the efficiency of our new results.

    Citation: Jun He, Yan-Min Liu, Jun-Kang Tian, Ze-Rong Ren. A note on the inclusion sets for singular values[J]. AIMS Mathematics, 2017, 2(2): 315-321. doi: 10.3934/Math.2017.2.315

    Related Papers:

  • In this paper, for a given matrix $A=(a_{ij}) \in \mathbb{C}.{n\times n}$, in terms of $r_i$ and $c_i$, where $ r_i = \sum\limits_{j = 1, j \ne i}.n {\left| {a_{ij} } \right|}, \ \ c_i = \sum\limits_{j = 1, j \ne i}.n {\left| {a_{ji} } \right|} $, some new inclusion sets for singular values of a matrix are established. It is proved that the new inclusion sets are tighter than the Geršgorin-type sets [1] and the Brauer-type sets [2]. A numerical experiment show the efficiency of our new results.


    加载中
    [1] L. Qi, Some simple estimates of singular values of a matrix, Linear Algebra Appl. 56 (1984), 105-119.
    [2] L.L. Li, Estimation for matrix singular values, Comput. Math. Appl. 37 (1999), 9-15.
    [3] R.A. Brualdi, Matrices, eigenvalues, and directed graphs, Linear Mutilinear Algebra, 11 (1982), 143-165.
    [4] G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal. 2 (1965), 205-224.
    [5] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
    [6] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
    [7] C.R. Johnson, A Geršgorin-type lower bound for the smallest singular value, Linear Algebra Appl., 112 (1989), 1-7.
    [8] C.R. Johnson, T. Szulc, Further lower bounds for the smallest singular value, Linear Algebra Appl. 272 (1998), 169-179.
    [9] W. Li, Q. Chang, Inclusion intervals of singular values and applications, Comput. Math. Appl., 45 (2003), 1637-1646.
    [10] Hou-Biao Li, Ting-Zhu Huang, Hong Li, Inclusion sets for singular values, Linear Algebra Appl. 428 (2008), 2220-2235.
    [11] R. S. Varga, Geršgorin and his circles, Springer Series in Computational Mathematics, Springer-Verlag, 2004.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4054) PDF downloads(1105) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog