Research article

A note on the inclusion sets for singular values

  • Received: 01 February 2017 Accepted: 15 May 2017 Published: 23 May 2017
  • In this paper, for a given matrix A=(aij)C.n×n, in terms of ri and ci, where ri=j=1,ji.n|aij|,  ci=j=1,ji.n|aji|, some new inclusion sets for singular values of a matrix are established. It is proved that the new inclusion sets are tighter than the Geršgorin-type sets [1] and the Brauer-type sets [2]. A numerical experiment show the efficiency of our new results.

    Citation: Jun He, Yan-Min Liu, Jun-Kang Tian, Ze-Rong Ren. A note on the inclusion sets for singular values[J]. AIMS Mathematics, 2017, 2(2): 315-321. doi: 10.3934/Math.2017.2.315

    Related Papers:

    [1] Xiaoyan Xiao, Feng Zhang, Yuxin Cao, Chunwen Zhang . Some matrix inequalities related to norm and singular values. AIMS Mathematics, 2024, 9(2): 4205-4210. doi: 10.3934/math.2024207
    [2] Sahibzada Waseem Ahmad, Muhammad Sarwar, Thabet Abdeljawad, Gul Rahmat . Multi-valued versions of Nadler, Banach, Branciari and Reich fixed point theorems in double controlled metric type spaces with applications. AIMS Mathematics, 2021, 6(1): 477-499. doi: 10.3934/math.2021029
    [3] Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed . Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022
    [4] Javid Iqbal, Imran Ali, Puneet Kumar Arora, Waseem Ali Mir . Set-valued variational inclusion problem with fuzzy mappings involving XOR-operation. AIMS Mathematics, 2021, 6(4): 3288-3304. doi: 10.3934/math.2021197
    [5] Yonghong Duan, Ruiping Wen . An alternating direction power-method for computing the largest singular value and singular vectors of a matrix. AIMS Mathematics, 2023, 8(1): 1127-1138. doi: 10.3934/math.2023056
    [6] Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen . Non-separated inclusion problem via generalized Hilfer and Caputo operators. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294
    [7] Ziteng Zhao, Jing Wang, Yali Wu . Note on p-ideals set of orthomodular lattices. AIMS Mathematics, 2024, 9(11): 31947-31961. doi: 10.3934/math.20241535
    [8] Maliha Rashid, Akbar Azam, Maria Moqaddas, Naeem Saleem, Maggie Aphane . Ciric fixed point theorems of £-fuzzy soft set-valued maps with applications in fractional integral inclusions. AIMS Mathematics, 2025, 10(3): 4641-4661. doi: 10.3934/math.2025215
    [9] Waqar Afzal, Najla M. Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan . Some novel Kulisch-Miranker type inclusions for a generalized class of Godunova-Levin stochastic processes. AIMS Mathematics, 2024, 9(2): 5122-5146. doi: 10.3934/math.2024249
    [10] Kezheng Zuo, Dragana S. Cvetković-Ilić, Jiale Gao . GBD and L-positive semidefinite elements in C-algebras. AIMS Mathematics, 2025, 10(3): 6469-6479. doi: 10.3934/math.2025295
  • In this paper, for a given matrix A=(aij)C.n×n, in terms of ri and ci, where ri=j=1,ji.n|aij|,  ci=j=1,ji.n|aji|, some new inclusion sets for singular values of a matrix are established. It is proved that the new inclusion sets are tighter than the Geršgorin-type sets [1] and the Brauer-type sets [2]. A numerical experiment show the efficiency of our new results.


    1. Introduction

    Singular values and the singular value decomposition play an important role in numerical analysis and many other applied fields [3,4,5,6,7,8]. First, we will use the following notations and definitions. Let N:={1,2,,n}, and assume n2 throughout. For a given matrix A=(aij)Cn×n, we define ai=|aii|, si=max{ri,ci} for any iN and u+=max{0,u}, where

    ri:=nj=1,ji|aij|,  ci:=nj=1,ji|aji|.

    In terms of si, the Geršgorin-type, Brauer-type and Ky-Fan type inclusion sets of the matrix singular values are given in [2,1,9,10], we list the results as follows.

    Theorem 1 If a matrix A=(aij)Cn×n, then

    (ⅰ) (Geršgorin-type, see [1]) all singular values of A are contained in

    C(A):=ni=1Ci  with  Ci=[(aisi)+,(ai+si)]R. (1.1)

    (ⅱ) (Brauer-type, see [2]) all singular values of A are contained in

    D(A):=ni=1nj=1,ji{z0:|zai||zaj|sisj}. (1.2)

    (ⅲ) (Ky Fan-type, see [2]) Let B=(bij)Rn×n be a nonnegative matrix satisfying bijmax|aij|,|aji| for any ij, then all singular values of A are contained in

    E(A):=ni=1{z0:|zai|ρ(B)bii}.

    We observe that, all the results in Theorem 1 are based on the values of si=max{ri,ci}, if rici or rici, all these singular values localization sets in Theorem 1 become very crude. In this paper, we give some new singular values localization sets which are based on the values of ri and ci. The remainder of the paper is organized as follows. In Section 2, we give our main results. In Section 3, some comparisons and illustrative example are given.


    2. New inclusion sets for singular values.

    Based on the idea of Li in [2], we give our main results as follows.

    Theorem 2 If a matrix A=(aij)Cn×n, then all singular values of A are contained in

    Γ(A):=Γ1(A)Γ2(A),

    where

    Γ1(A):=ni=1{σ0:|σ2|aii|2||aii|ri(A)+σci(A)},

    and

    Γ2(A):=ni=1{σ0:|σ2|aii|2||aii|ci(A)+σri(A)}.

    Proof. Let σ be an arbitrary singular value of A. Then there exist two nonzero vectors x=(x1,x2,,xn)t and y=(y1,y2,,yn)t such that

    σx=Ay  and  σy=Ax. (2.1)

    Denote

    |xp|=max{|xi|,  1in},  |yq|=max{|yi|,1in},

    and xq is the q-th element in the vector x=(x1,x2,,xn)t.

    The q-th equations in (2.1) imply

    σxq¯aqqyq=nj=1,jq¯ajqyj, (2.2)
    σyqaqqxq=nj=1,jqaqjxj. (2.3)

    Solving for yq we can get

    (σ2aqq¯aqq)yq=aqqnj=1,jq¯ajqyj+σnj=1,jqaqjxj. (2.4)

    Taking the absolute value on both sides of the equation and using the triangle inequality yields

    |σ2|aqq|2||yq||aqq|nj=1,jq|¯ajq||yj|+σnj=1,jq|aqj||xj||aqq|nj=1,jq|¯ajq||yq|+σnj=1,jq|aqj||xp|. (2.5)

    If |xp||yq|, we can get

    |σ2|aqq|2||aqq|cq(A)+σrq(A).

    Similarly, if |yq||xp|, we can get

    |σ2|app|2||app|rp(A)+σcp(A).

    Thus, we complete the proof.

    Remark 1 Since

    |aii|ri(A)+σci(A)(|aii|+σ)si,

    and

    |aii|ci(A)+σri(A)(|aii|+σ)si.

    Therefore, the inclusion sets in Theorem 2 are always tighter than the inclusion sets in Theorem 1 (ⅰ). That is to say, our results in Theorem 2 are always better than the results in Theorem 1 (ⅰ).

    Theorem 3 If a matrix A=(aij)Cn×n, then all singular values of A are contained in

    Δ(A):=Δ1(A)Δ2(A),

    where

    Δ1(A)=ni=1,j=1{σ0:(|σ2|aii|2||aii|ci(A))|σ2|ajj|2|σri(A)(σcj(A)+|ajj|rj(A))},
    Δ2(A)=ni=1,j=1{σ0:|σ2|aii|2|(|σ2|ajj|2||ajj|rj(A))σcj(A)(σri(A)+|aii|ci(A))}.

    Proof. Let σ be an arbitrary singular value of A. Then there exist two nonzero vectors x=(x1,x2,,xn)t and y=(y1,y2,,yn)t such that

    σx=Ay  and  σy=Ax. (2.6)

    Denote

    |xp|=max{|xi|,  1in},  |yq|=max{|yi|,1in}.

    Similar to the proof of Theorem 2, the q-th equations in (2.6) imply

    |σ2|aqq|2||yq||aqq|nj=1,jq|ajq||yj|+σnj=1,jq|aqj||xj||aqq|nj=1,jq|ajq||yq|+σnj=1,jq|aqj||xp|. (2.7)

    That is,

    (|σ2|aqq|2||aqq|nj=1,jq|ajq|)|yq|σnj=1,jq|aqj||xp|. (2.8)

    If |xp||yq|, the p-th equations in (2.6) imply

    0|σ2|app|2||xp|(σnj=1,jp|ajp|+|app|nj=1,jp|qpj|)|yq|. (2.9)

    Multiplying inequalities (2.8) with (2.9), we have

    (|σ2|aqq|2||aqq|cq(A))|σ2|app|2|σrq(A)(σcp(A)+|app|rp(A)).

    Similarly, if |xp||yq|, we can get

    |σ2|aqq|2|(|σ2|app|2||app|rp(A))σcp(A)(σrq(A)+|aqq|cq(A)).

    Thus, we complete the proof.

    We now establish comparison results between Δ(A) and Γ(A).

    Theorem 4 If a matrix A=(aij)Cn×n, then

    σ(A)Δ(A)Γ(A).

    Proof. Let z be any point of Δ1(A). Then there are i,jN such that zΔ1(A), i.e.,

    (|z2|aii|2||aii|ci(A))|z2|ajj|2|zri(A)(zcj(A)+|ajj|rj(A)). (2.10)

    If zri(A)(zcj(A)+|ajj|rj(A))=0, then

    |z2|aii|2||aii|ci(A)=0,

    or

    |z2|ajj|2|=0.

    Therefore, zΓ1(A)Γ2(A). Moreover, If zri(A)(zcj(A)+|ajj|rj(A))>0, then from inequality (2.10), we have

    |z2|a2ii|||aii|ci(A)zri(A)|z2|a2jj||zcj(A)+|ajj|rj(A)1. (2.11)

    Hence, from inequality (2.11), we have that

    |z2|a2ii|||aii|ci(A)zri(A)1,

    or

    |z2|a2jj||zcj(A)+|ajj|rj(A)1.

    That is, zΓ1(A) or zΓ2(A), i.e., zΓ(A). Similarly, if z be any point of Δ2(A), we can get zΓ(A).

    Thus, we complete the proof.

    Example 1. Let

    [140.10.5].

    The singular values of A are σ1=4.1544 and σ2=0.0241. The singular value inclusion sets C(A), D(A), Γ(A) and the exact singular values are drawn in Figure 1. From Figure 1, we can say, all the singular values are contained in the singular value inclusion sets C(A), D(A), Γ(A), but the inclusion sets Γ(A) are more tighter than the inclusion sets C(A), D(A). That is to say, the results in Theorem 2 are better than the results in Theorem 1 for certain examples.

    Figure 1. Comparisons of Theorem 1 (ⅰ), Theorem 1 (ⅱ) and Theorem 2 for example 1.

    The singular value inclusion sets Γ(A), Δ(A) and the exact singular values are drawn in Figure 2. From Figure 2, we can say, all the singular values are contained in the singular value inclusion sets Γ(A), Δ(A), but the inclusion sets Δ(A) are more tighter than the inclusion sets Γ(A). That is to say, the results in Theorem 3 are always better than the results in Theorem 2, which are shown in Theorem 4.

    Figure 2. Comparisons of Theorem 2 and Theorem 3 for example 1.

    3. Conclusion

    In this paper, some new inclusion sets for singular values are given, theoretical analysis and numerical example show that these estimates are more efficient than recent corresponding results in some cases.


    Acknowledgements

    He is supported by Science and technology Foundation of Guizhou province (Qian ke he Ji Chu [2016]1161); Guizhou province natural science foundation in China (Qian Jiao He KY [2016]255); The doctoral scientific research foundation of Zunyi Normal College (BS[2015]09). Liu is supported by National Natural Science Foundations of China (71461027); Science and technology talent training object of Guizhou province outstanding youth (Qian ke he ren zi [2015]06); Guizhou province natural science foundation in China (Qian Jiao He KY [2014]295); 2013, 2014 and 2015 Zunyi 15851 talents elite project funding; Zhunyi innovative talent team (Zunyi KH (2015)38). Tian is supported by Guizhou province natural science foundation in China (Qian Jiao He KY [2015]451);Scienceand technology Foundation of Guizhou province (Qian ke he J zi [2015]2147). Ren is supported by Science and technology Foundationof Guizhou province (Qian ke he LH zi [2015]7006).


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.


    [1] L. Qi, Some simple estimates of singular values of a matrix, Linear Algebra Appl. 56 (1984), 105-119.
    [2] L.L. Li, Estimation for matrix singular values, Comput. Math. Appl. 37 (1999), 9-15.
    [3] R.A. Brualdi, Matrices, eigenvalues, and directed graphs, Linear Mutilinear Algebra, 11 (1982), 143-165.
    [4] G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal. 2 (1965), 205-224.
    [5] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
    [6] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
    [7] C.R. Johnson, A Geršgorin-type lower bound for the smallest singular value, Linear Algebra Appl., 112 (1989), 1-7.
    [8] C.R. Johnson, T. Szulc, Further lower bounds for the smallest singular value, Linear Algebra Appl. 272 (1998), 169-179.
    [9] W. Li, Q. Chang, Inclusion intervals of singular values and applications, Comput. Math. Appl., 45 (2003), 1637-1646.
    [10] Hou-Biao Li, Ting-Zhu Huang, Hong Li, Inclusion sets for singular values, Linear Algebra Appl. 428 (2008), 2220-2235.
    [11] R. S. Varga, Geršgorin and his circles, Springer Series in Computational Mathematics, Springer-Verlag, 2004.
  • This article has been cited by:

    1. L. Yu. Kolotilina, A New Subclass of the Class of Nonsingular H
    -Matrices and Related Inclusion Sets for Eigenvalues and Singular Values, 2019, 240, 1072-3374, 813, 10.1007/s10958-019-04398-4
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4420) PDF downloads(1106) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog