Citation: Jun He, Yan-Min Liu, Jun-Kang Tian, Ze-Rong Ren. A note on the inclusion sets for singular values[J]. AIMS Mathematics, 2017, 2(2): 315-321. doi: 10.3934/Math.2017.2.315
[1] | L. Qi, Some simple estimates of singular values of a matrix, Linear Algebra Appl. 56 (1984), 105-119. |
[2] | L.L. Li, Estimation for matrix singular values, Comput. Math. Appl. 37 (1999), 9-15. |
[3] | R.A. Brualdi, Matrices, eigenvalues, and directed graphs, Linear Mutilinear Algebra, 11 (1982), 143-165. |
[4] | G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal. 2 (1965), 205-224. |
[5] | R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. |
[6] | R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991. |
[7] | C.R. Johnson, A Geršgorin-type lower bound for the smallest singular value, Linear Algebra Appl., 112 (1989), 1-7. |
[8] | C.R. Johnson, T. Szulc, Further lower bounds for the smallest singular value, Linear Algebra Appl. 272 (1998), 169-179. |
[9] | W. Li, Q. Chang, Inclusion intervals of singular values and applications, Comput. Math. Appl., 45 (2003), 1637-1646. |
[10] | Hou-Biao Li, Ting-Zhu Huang, Hong Li, Inclusion sets for singular values, Linear Algebra Appl. 428 (2008), 2220-2235. |
[11] | R. S. Varga, Geršgorin and his circles, Springer Series in Computational Mathematics, Springer-Verlag, 2004. |