Citation: Masaaki Mizukami. Remarks on smallness of chemotactic effect for asymptotic stability in a two-species chemotaxis system[J]. AIMS Mathematics, 2016, 1(3): 156-164. doi: 10.3934/Math.2016.3.156
[1] | X. Bai, M.Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65 (2016), 553-583. |
[2] | N. Bellomo, A. Bellouquid, Y. Tao,and M.Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. |
[3] | C. Bianca, M. Pennisi, S. Motta, M.A. Ragusa, Immune system network and cancer vaccine. AIP Conf. Proc., 1389 (2011), 945-948. |
[4] | T. Hillen, K. J. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183-217. |
[5] | D. Horstmann, From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math. -Verein. 106 (2004), 51-69. |
[6] | D. Horstmann, Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21 (2011), 231-270. |
[7] | S. Kathirvel, R. Jangre, S. Ko, Design of a novel energy eficient topology for maximum magnitude generator. IET Computers and Digital Techniques, 10 (2016), 93101. |
[8] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. |
[9] | O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, AMS, Providence, 1968. |
[10] | M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. submitted. |
[11] | M. Mizukami, T. Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diflusion. J. Diflerential Equations 261 (2016), 2650-2669. |
[12] | M. Negreanu, J. I. Tello, On a two species chemotaxis model with slow chemical diflusion. SIAM J. Math. Anal. 46 (2014), 3761-3781. |
[13] | M. Negreanu, J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diflusive chemoattractant. J. Diflerential Equations 258 (2015), 1592-1617. |
[14] | F. Pappalardo, V. Brusic, F. Castiglione, C. Schonbach, Computational and bioinforfatics techniques for immunology. BioMed research international, 2014 (2014), 1-2. |
[15] | G. Wolansky, Multi-components chemotactic system in the absence of conflicts. European J. Appl. Math. 13 (2002), 641-661. |