Citation: Song Lunji. A High-Order Symmetric Interior Penalty Discontinuous Galerkin Schemeto Simulate Vortex Dominated Incompressible Fluid Flow[J]. AIMS Mathematics, 2016, 1(1): 43-63. doi: 10.3934/Math.2016.1.43
[1] | J. B. Barlow, W. H. Rae, and A. Pope (1999) Low-Speed Wind Tunnel Testing, John Wiley. |
[2] | A. J. Chorin (1969) On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comp., 23. |
[3] | M. Drela (2014) Flight Vehicle Aerodynamics.MIT Press, Boston . |
[4] | Y. Epshteyn, B. Rivi`ere (2007) Estimation of penalty parameters for symmetric interior penalty Galerkin methods,.J. Comput. Appl. Math., 206 . |
[5] | U. Fey, M. K¨onig, and H. Eckelmann (1998) A new Strouhal-Reynolds-number relationship for the circular cylinder in the range 47 ≤ Re ≤ 2 × 105,.Physics of Fluids 1547-1549. |
[6] | U.Ghia, K. N. Ghia, C. T. Shin (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method..J. Comput. Phys., 48: 387-411. |
[7] | V. Girault, B. Rivi`ere, and M. F. Wheeler (2005) A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations,.ESAIM: Mathematical Modelling and Numerical Analysis, 39: 1115-1147. |
[8] | V. Girault, B. Rivi`ere, and M. F. (2005) Wheeler, A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems,.Math. Comp 53-84. |
[9] | O. Goyon (1996) High-Reynolds number solutions of Navier-Stokes equations using incremental unknowns,.Comput. Method. Appl. M.130 319-335. |
[10] | J. S. Hesthaven (1998) From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex,.SIAM J. Numer. Anal. 35: 655-676. |
[11] | J. S. Hesthaven, C. H. Teng (2000) Stable spectral methods on tetrahedral elements, SIAM.J. Sci. Comput., 2352-2380. |
[12] | S. F Hoerner (1965) Fluid-Dynamic Drag, Hoerner Fluid Dynamics.Bakersfield . |
[13] | G. Karniadakis, S. J. Sherwin (2005) Spectral/hp element methods for CFD, Oxford University Press.New York . |
[14] | S. Kaya, B. Rivi`ere (2005) A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations, SIAM J.Numer. Anal 43: 1572-1595. |
[15] | B. Rivi`ere, M. F. Wheeler, and V. Girault (1999) Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems..Part I, Comput. Geosci., 337-360. |
[16] | M. Sch¨afer, S. Turek (1996) The benchmark problem ‘flow around a cylinder’, In Flow Simulation with High-Performance Computers II, Hirschel, E.H.(ed.). Notes on Numerical Fluid Mechanics, vol. 52.Vieweg, Braunschweig, 547-566. |
[17] | J. Shen (1991) Hopf bifurcation of the unsteady regularized driven cavity flow,.J. Comput. Phys 95: 228-245. |
[18] | J. Shen (1996) On error estimates of the projection methods for the Navier-Stokes equations: Secondorder schemes,.Math. Comp 65: 1039-1065. |
[19] | L. Song, Z. Zhang (2015) Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems,.Discrete Contin. Dyn. Syst. – Ser. B 20: 1405-1426. |
[20] | L. Song, Z. Zhang (2015) Superconvergence property of an over-penalized discontinuous Galerkin finite element gradient recovery method,.J. Comput. Phys 299: 1004-1020. |
[21] | R. Temam (2001) Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea publishing.Providence . |
[22] | R. Temam (1995) Navier-Stokes Equations and Nonlinear Functional Analysis, Volume 66 of CBMSNSF Regional Conference Series in Applied Mathematics.SIAM, Philadelphia, second edition . |
[23] | M. F. Wheeler (1978) An elliptic collocation-finite element method with interior penalties,.SIAM J. Numer. Anal., 15: 152-161. |