Citation: Brittany L. Oliva-Chatelain, Andrew R. Barron. Experiments towards size and dopant control of germanium quantum dots for solar applications[J]. AIMS Materials Science, 2016, 3(1): 1-21. doi: 10.3934/matersci.2016.1.1
[1] | Soga T (2006) Nanostructured Materials for Solar Energy Conversion, New York: Elsevier. |
[2] | Littau KA, Szajowski PJ, Muller AJ, et al. (1993) A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J Phys Chem 97: 1224–1230. doi: 10.1021/j100108a019 |
[3] | Ni Z, Pi X, Yang D (2014) Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory. Phys Rev B 89: 035312. doi: 10.1103/PhysRevB.89.035312 |
[4] | Zhou S, Pi X, Ni Z, et al. (2015) Boron- and phosphorus-hyperdoped silicon nanocrystals. Part Part Syst Charact 32: 213–221. doi: 10.1002/ppsc.201400103 |
[5] | Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescent properties of porous silicon. J Appl Phys 82: 909–965. doi: 10.1063/1.366536 |
[6] | Oliva-Chatelain BL, Ticich TM, Barron AR (2015) Doping silicon nanocrystals and quantum dots. Nanoscale [in press]. |
[7] | Sugimoto H, Fujii M, Imakita K, et al. (2012) All-inorganic near-infrared luminescent colloidal silicon nanocrystals: high dispersibility in polar liquid by phosphorus and boron codoping. J Phys Chem C 116: 17969−17974. |
[8] | Ni Z, Pi X, Ali M, et al. (2015) Freestanding doped silicon nanocrystals synthesized by plasma. J Phys D: Appl Phys 48: 314006. doi: 10.1088/0022-3727/48/31/314006 |
[9] | Ruddy DA, Erslev PT, Habas SE, et al. (2013) Surface chemistry exchange of alloyed germanium nanocrystals: a pathway toward conductive group IV nanocrystal films. J Phys Chem Lett 4: 416–421. doi: 10.1021/jz3020875 |
[10] | Baldwin RK, Zou J, Pettigrew KA, et al. (2006) The preparation of a phosphorus doped silicon film from phosphorus containing silicon nanoparticles. Chem Commun 6: 658–660. |
[11] | Wheeler LM, Neale NR, Chen T, et al. (2013) Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals. Nat Commun 4: 2197. |
[12] | Prabakar S, Shiohara A, Hanada K, et al. (2010) Size controlled synthesis of germanium quantum nanocrystals by hydride reducing agents and their biological applications. Chem Mater 22: 482–486. doi: 10.1021/cm9030599 |
[13] | Oliva BL, Barron AR (2012) Thin films of silica imbedded silicon and germanium quantum dots by solution processing. Mater Sci Semicond Proc 15: 713–721. doi: 10.1016/j.mssp.2012.03.018 |
[14] | Ashby SP, Chao Y (2014) Use of electrochemical etching to produce doped phenylacetylene functionalized particles and their thermal stability. J Electron Mater 43: 2006–2010. doi: 10.1007/s11664-013-2935-y |
[15] | Garrone E, Geobaldo F, Rivolo P, et al. (2005) A nanostructured porous silicon near insulator becomes either a p- or an n-type semiconductor upon gas adsorption. Adv Mater 17: 528–531. doi: 10.1002/adma.200401200 |
[16] | Zhang L, Zhang J, Schmandt N, et al. (2005) AFM and STM characterization of thiol and thiophene functionalized SWNTs: pitfalls in the use of gold nanoparticles to determine the extent of side-wall functionalization in SWNTs. Chem Commun 2005: 5429–5430. |
[17] | Zhang L, Yang J, Edwards CL, et al. (2005) Diels alder addition to fluorinated single walled carbon nanotubes. Chem Commun 2005: 3265–3267. |
[18] | Zeng L, Zhang L, Barron AR (2005) Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. Nano Lett 5: 2001–2004. doi: 10.1021/nl0514994 |
[19] | Rutledge H, Oliva-Chatelain BL, Maquire-Boyle SJ, et al. (2014) Imbedding germanium quantum dots in silica by a modified Stober method. Mater Sci Semicond Proc 17: 7–12. |
[20] | Yang J, Barbarich TJ, Barron AR (2013) SiO2 template-derived polyurethane and alumina nanoparticle-polyurethane lithium ion separator membranes. Main Group Chem 12: 45–56. |
[21] | Lu Y-T, Barron AR (2015) In-situ fabrication of a self-aligned selective emitter silicon solar cell using the gold top contacts to facilitate the synthesis of a nanostructured black silicon anti-reflective layer instead of an external metal nanoparticle catalyst. ACS Appl Mater Interfaces 7: 11802–11814. doi: 10.1021/acsami.5b01008 |
[22] | Grossi V, Ottaviano L, Santucci S, et al. (2010) XPS and SEM studies of oxide reduction of germanium nanowires. J Non-Cryst Sol 356: 1988–1993. doi: 10.1016/j.jnoncrysol.2010.05.042 |
[23] | Lu ZH (1996) Air-stable Cl-terminated Ge (111). Appl Phys Lett 68: 520–522. doi: 10.1063/1.116386 |
[24] | Kim S, Walker B, Park SY, et al. (2014) Size tailoring of aqueous germanium nanoparticle dispersions. Nanoscale 6: 10156–10160. doi: 10.1039/C4NR01596G |
[25] | Ma Y, Chen X, Pi X, et al. (2011) Theoretical study of chlorine for silicon nanocrystals. J Phys Chem C 115: 12822–12825. |
[26] | Straumanis ME, Aka EZ (1952) Lattice parameters, coefficients of thermal expansion, and atomic weights of purest silicon and germanium. J Appl Phys 23: 330–334. doi: 10.1063/1.1702202 |
[27] | Sze SM (1985) Semiconductor Devices: Physics and Technology, New York: Wiley. |
[28] | Vollhardt KPC, Schore NE (2003) Organic Chemistry: Structure and Function, New York: W. H. Freeman and Company. |
[29] | Livingston JD (1999) Electronic Properties of Engineering Materials, New York: John Wiley. |
[30] | Yamauchi T, Tabuchi M, Nakamura A (2004) Size dependence of the work function in InAs quantum dots on GaAs (001) as studied by Kelvin force probe microscopy. Appl Phys Lett 84: 3834–3836. doi: 10.1063/1.1745110 |
[31] | Alfaro P, Miranda A, Ramos AE, et al. (2006) Hydrogenated Ge nanocrystals: bandgap evolution with increasing size. Braz J Phys 36: 375–378. |
[32] | Crouse C, Barron AR (2008) Reagent control over the size, uniformity, and composition of Co-Fe-Onanoparticles. J Mater Chem 18: 4146–4153. doi: 10.1039/b806686h |
[33] | Baldwin RK, Pettigrew KA, Garno JC, et al. (2002) Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J Am Chem Soc 124: 1150–1151. doi: 10.1021/ja017170b |
[34] | Pearson GL, Bardeen, J (1949) Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys Rev 75: 865–883. doi: 10.1103/PhysRev.75.865 |
[35] | Baldwin RK, Zhou J, Pettigrew KA, et al. (2006) The preparation of a phosphorus doped silicon film from phosphorus containing silicon nanoparticles. Chem Comm 2006: 658–660. |
[36] | Binions R, Carmalt CJ, Parkin IP (2003) Germanium phosphide coatings from the atmospheric pressure chemical vapor deposition of GeX4 (X=Cl or Br) and PCychexH2. Polyhedron 22: 1683–1688. doi: 10.1016/S0277-5387(03)00328-0 |
[37] | Ren J, Eckert H (2012) Quantification of short and medium range order in mixed network former glasses of the system GeO2-NaPO3: a combined NMR and X-ray photoelectron spectroscopy study. J Phys Chem C 116: 12747–12763. doi: 10.1021/jp301383x |
[38] | Konig D, Gutsch S, Gnaser H, et al. (2015) Location and electronic nature of phosphorus in the Si nanocrystal – SiO2 system. Sci Rep 5: 09702. doi: 10.1038/srep09702 |
[39] | Manna S, Prtljaga N, Das S, et al. (2012) Photophysics of resonantly and non-resonantly excited erbium doped Ge nanowires. Nanotechnology 23: 065702. doi: 10.1088/0957-4484/23/6/065702 |
[40] | Ebraheem S, El-Saied A (2013) Band gap determination from diffuse reflectance measurements of irradiated lead borate glass system doped with TiO2 by using diffuse reflectance technique. Mater Sci App 4: 324–329. |
[41] | Ghobadi N (2013) Band gap determination using absorption spectrum fitting procedure. Intl Nano Lett 3: 1–4. |
[42] |
Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319: 1776–1779. |