Citation: Subbarayan Sivasankaran. Influence of TiC addition on the surface roughness during turning of AA 7075 alloy processed through stir-casting[J]. AIMS Materials Science, 2018, 5(4): 699-710. doi: 10.3934/matersci.2018.4.699
[1] | Guo RF, Shen P, Sun C, et al. (2016) Processing and mechanical properties of lamellar-structured Al–7Si–5Cu/TiC composites. Mater Design 106: 446–453. doi: 10.1016/j.matdes.2016.06.008 |
[2] | Melgarejo ZH, Suarez OM, Sridharan K (2006) Wear resistance of a functionally-graded aluminum matrix composite. Scripta Mater 55: 95–98. doi: 10.1016/j.scriptamat.2006.03.031 |
[3] | Vieira AC, Sequeira PD, Gomes JR, et al. (2009) Dry sliding wear of Al alloy/SiCp functionally graded composites: influence of processing conditions. Wear 267: 585–592. doi: 10.1016/j.wear.2009.01.041 |
[4] | Rodrıguez-Castro R, Wetherhold RC, Kelestemur MH (2002) Microstructure and mechanical behavior of functionally graded Al A359/SiCp composite. Mater Sci Eng A-Struct 323: 445–456. doi: 10.1016/S0921-5093(01)01400-9 |
[5] | Prabhu TR (2015) Effects of solid lubricants, load, and sliding speed on the tribological behavior of silica reinforced composites using design of experiments. Mater Design 77: 149–160. doi: 10.1016/j.matdes.2015.03.059 |
[6] | Uyyuru RK, Surappa MK, Brusethaug S (2006) Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribo-couple. Wear 260: 1248–1255. doi: 10.1016/j.wear.2005.08.011 |
[7] | Lin QL, Shen P, Yang LL, et al. (2011) Wetting of TiC by molten Al at 1123–1323 K. Acta Mater 59: 1898–1911. doi: 10.1016/j.actamat.2010.11.055 |
[8] | Rana RS, Purohit R, Das S (2012) Review of recent studies in Al matrix composites. Int J Sci Eng Res 3: 1–16. |
[9] | Li P, Kandalova EG, Nikitin VI (2005) In situ synthesis of Al–TiC in aluminum melt. Mater Lett 59: 2545–2548. doi: 10.1016/j.matlet.2005.03.043 |
[10] | Shaga A, Shen P, Sun C, et al. (2015) Lamellar-interpenetrated Al–Si–Mg/SiC composites fabricated by freeze casting and pressureless infiltration. Mater Sci Eng A-Struct 630: 78–84. doi: 10.1016/j.msea.2015.02.012 |
[11] | Deuis RL, Subramanian C, Yellup JM (1997) Dry sliding wear of aluminium composites—a review. Compos Sci Technol 57: 415–435. doi: 10.1016/S0266-3538(96)00167-4 |
[12] | Mazahery A, Shabani MO (2012) Study on microstructure and abrasive wear behavior of sintered Al matrix composites. Ceram Int 38: 4263–4269. |
[13] | Kennedy AR, Weston DP, Jones MI (2001) Reaction in Al–TiC metal matrix composites. Mater Sci Eng A-Struct 316: 32–38. doi: 10.1016/S0921-5093(01)01228-X |
[14] | Vieira AC, Sequeira PD, Gomes JR, et al. (2009) Dry sliding wear of Al alloy/SiCp functionally graded composites: influence of processing conditions. Wear 267: 585–592. doi: 10.1016/j.wear.2009.01.041 |
[15] | Rajan TPD, Pillai RM, Pai BC (2010) Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites. Mater Charact 61: 923–928. doi: 10.1016/j.matchar.2010.06.002 |
[16] | Melgarejo ZH, Suarez OM, Sridharan K (2008) Microstructure and properties of functionally graded Al–Mg–B composites fabricated by centrifugal casting. Compos Part A-Appl S 39: 1150–1158. doi: 10.1016/j.compositesa.2008.04.002 |
[17] | Lu HX, Hu J, Chen CP, et al. (2005) Characterization of Al2O3–Al nano-composite powder prepared by a wet chemical method. Ceram Int 31: 481–485. doi: 10.1016/j.ceramint.2004.06.014 |
[18] | Yang DL, Qiu F, Zhao QL, et al. (2017) The microstructure and tensile property for Al2014 composites reinforced with Ti5Si3-coated SiCP. Mater Sci Eng A-Struct 688: 459–463. doi: 10.1016/j.msea.2017.02.016 |
[19] | Kim CS, Cho K, Manjili MH, et al. (2017) Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci 52: 13319–13349. doi: 10.1007/s10853-017-1378-x |
[20] | Baradeswaran A, Perumal AE (2013) Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos Part B-Eng 54: 146–152. doi: 10.1016/j.compositesb.2013.05.012 |
[21] | Geng J, Hong T, Ma Y, et al. (2016) The solution treatment of in-situ sub-micron TiB2/2024 Al composite. Mater Design 98: 186–193. doi: 10.1016/j.matdes.2016.03.024 |
[22] | Evans A, San Marchi C, Mortensen A (2003) Processing Metal Matrix Composites, In: Evans A, San Marchi C, Mortensen A, Metal Matrix Composites in Industry, Springer, Boston, MA, 39–64. |
[23] | Sivasankaran S, Harisagar PT, Saminathan E, et al. (2014) Effect of nose radius and graphite addition on turning of AA 7075-ZrB2 in-situ composites. Procedia Eng 97: 582–589. doi: 10.1016/j.proeng.2014.12.286 |
[24] | Ramkumar KR, Bekele H, Sivasankaran S (2015) Experimental investigation on mechanical and turning behavior of Al 7075/x% wt. TiB2-1% Gr in-situ hybrid composite. Adv Mater Sci Eng 2015: 727141 |
[25] | Palainasamy A, Selvaraj T, Sivasankaran S (2017) Taguchi-based grey relational analysis for modeling and optimizing machining parameters through dry turning of Incoloy 800H. J Mech Sci Technol 31: 4159–4165. doi: 10.1007/s12206-017-0812-y |
[26] | Teague EC, Vorburger TV, Maystre D, et al. (1981) Light scattering from manufactured surfaces. CIRP Ann-Manuf Techn 30: 563–569. doi: 10.1016/S0007-8506(07)60168-1 |
[27] | Li L, Collins SA, Yi AY (2010) Optical effects of surface finish by ultra precision single point diamond machining. ASME J Manuf Sci Eng 132: 021002. doi: 10.1115/1.4001037 |
[28] | Wang Y, Shen P, Guo RF, et al. (2017) Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceram Int 43: 3831–3838. doi: 10.1016/j.ceramint.2016.12.038 |
[29] | Mohapatra S, Chaubey AK, Mishra DK, et al. (2016) Fabrication of Al–TiC composites by hot consolidation technique: its microstructure and mechanical properties. J Mater Res Technol 5: 117–122 doi: 10.1016/j.jmrt.2015.07.001 |
[30] | Sivasankaran S, Sivaprasad K, Narayanasamy R, et al. (2010) An investigation on flowability and compressibility of AA 6061100−x-x wt.% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol 201: 70–82. |
[31] | Ramkumar KR, Sivasankaran S, Alaboodi AS (2017) Effect of alumina content on microstructures, mechanical, wear and machining behavior of Cu-10Zn nanocomposite prepared by mechanical alloying and hot-pressing. J Alloy Compd 709: 129–141. doi: 10.1016/j.jallcom.2017.03.153 |
[32] | Gawdzińska K, Chybowski L, Przetakiewicz W (2016) Proper matrix-reinforcement bonding in cast metal matrix composites as a factor of their good quality. Arch Civ Mech Eng 16: 553–563. |
[33] | Basak AK, Pramanik A, Islam MN, et al. (2015) Challenges and recent developments on nanoparticle-reinforced metal matrix composites, In: Dong Y, Umer R, Lau AKT, Fillers and Reinforcements for Advanced Nanocomposites, A volume in Woodhead Publishing Series in Composites Science and Engineering, 349–367. |
[34] | Prabhu TR (2017) Processing and properties evaluation of functionally continuous graded 7075 Al alloy/SiC composites. Arch Civ Mech Eng 17: 20–31. doi: 10.1016/j.acme.2016.08.004 |
[35] | Savas O, Kayicki R, Ficici F, et al. (2014) Production of functionally graded SiC/Al-Cu-Mg composite by centrifugal casting. Sci Eng Compos Mater 21: 1–5. doi: 10.1515/secm-2012-0043 |
[36] | Kaya H, Uçar M, Cengiz A, et al. (2012) The effect of aging on the machinability of AA7075 aluminium alloy. Sci Res Essays 7: 2424–2430. |